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Abstract

Although a universal code for the acoustic features of animal vocal communication calls may not 

exist, the thorough analysis of the distinctive acoustical features of vocalization categories is 

important not only to decipher the acoustical code for a specific species but also to understand the 

evolution of communication signals and the mechanisms used to produce and understand them.

Here, we recorded more than 8,000 examples of almost all the vocalizations of the domesticated 

zebra finch, Taeniopygia guttata: vocalizations produced to establish contact, to form and maintain 

pair bonds, to sound an alarm, to communicate distress or to advertise hunger or aggressive 

intents. We characterized each vocalization type using complete representations that avoided any a 
priori assumptions on the acoustic code, as well as classical bioacoustics measures that could 

provide more intuitive interpretations. We then used these acoustical features to rigorously 

determine the potential information-bearing acoustical features for each vocalization type using 

both a novel regularized classifier and an unsupervised clustering algorithm. Vocalization 

categories are discriminated by the shape of their frequency spectrum and by their pitch saliency 

(noisy to tonal vocalizations) but not particularly by their fundamental frequency. Notably, the 

spectral shape of zebra finch vocalizations contains peaks or formants that vary systematically 

across categories and that would be generated by active control of both the vocal organ (source) 

and the upper vocal tract (filter).
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Background

Many social animals have evolved complex vocal repertoires not only to facilitate 

cooperative behaviors, such as pair bonding or predator avoidance, but also in competitive 

interactions such as in the establishment of social ranks, mate guarding or territorial defense 

(Seyfarth and Cheney, 2003). For example, many songbirds use elaborate songs (Catchpole 

and Slater, 1995) as well as other short calls (Marler, 2004) as part of the courtship behavior 

and initial pair formation. This initial pair formation can lead to cooperative nest building, 

territory defense, reproduction, chick-rearing and the formation of a long-term partnership. 

The maintenance of such a stable pair bond requires close social contact that can be 

facilitated by vocal communication. For example, loud contact calls that carry individual 

information play a key role for songbird partners that attempt to reunite after having lost 

visual contact (Vignal et al., 2008). Similarly, vocal duets of songs (Farabaugh, 1982; Hall, 

2004; Thorpe, 1972) or of calls (Elie et al., 2010) performed by partners can act as 

cooperative displays that signal commitment and reinforce the pair bond (Elie et al., 2010; 

Hall, 2004; Hall, 2009; Smith, 1994; Wickler and Seibt, 1980). In the context of cooperation 

for predator avoidance, birds produce alarm calls that can be predator specific (Evans et al., 

1993). Finally, in competitive interactions, such as in territorial defense, songbirds can use 

both songs (Searcy and Beecher, 2009) and specific calls (Ballentine et al., 2008) to 

advertise aggressive intentions. The social context in which each of these vocalizations is 

emitted (e.g. affiliative interaction, alarming situation, etc.) can be used to classify 

vocalizations into behaviorally meaningful categories that define the vocal repertoire.

To provide a large range of information to the receivers, categories of vocal communication 

signals in social species must be acoustically separable. Animals can exploit two sources of 

variability for the production of acoustic signals: the acoustic structure of each individual 

sound element and how these elements are combined into sequences (see Zuberbühler and 

Lemasson, 2014 for a review in primates). How animals exploit sound variability to code the 

different categories of meanings is still an open question. Here, we explore how the acoustic 

structure of each individual sound element encodes meanings in vocalizations. Although 

these identifying acoustical features (or signatures) of specific vocal categories have been 

examined extensively in the vocal repertoires of both mammals (e.g. Brand, 1976; Deaux 

and Clarke, 2013; Kruuk, 1972; Salmi et al., 2013) and birds (e.g. Collias, 1987; Dragonetti 

et al., 2013; Ficken et al., 1978), a comprehensive and rigorous analysis of these 

distinguishing features in a given species has been difficult to achieve because of the limited 

number of acoustic features tested and/or because of the limited size or quality of the 

datasets. As a result, acoustical signatures for complete repertoires are often described 

qualitatively from a relatively small number of distinguishing features as experienced by 

human listeners or as observed visually on their spectrographic representation (but see 

Fuller, 2014; Stowell and Plumbley, 2014). A more quantitative analysis requires a very 

large dataset of calls for two reasons. First, animal vocalizations, as characterized by their 

sound pressure waveform, are inherently highly dimensional: they are represented by a large 

number of amplitude values in time that jointly can code an infinite number of unique 

combinations. Describing the sounds without a priori assumptions on the nature of the 

distinguishing features requires a representation that is also highly dimensional and 
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preferably complete or invertible in the sense of being equivalent to the sound pressure 

waveform. In order to estimate the distribution of the sounds in this highly dimensional 

feature space, one would optimally need more samples than the number of parameters that 

describe each sound; and even if dimensionality reduction approaches are used, many 

samples are still required. Second, the dataset of vocalizations should include examples from 

the complete vocal repertoire of as many animals as possible. This sampling is needed in 

order to properly assess if vocalizations produced during different social interactions indeed 

form separable acoustical categories and, if so, to obtain reliable estimates of the within 

category variability. Such a data driven approach results in an unbiased identification of the 

distinguishing acoustical features among categories and in a rigorous estimation of the 

maximally achievable discriminability of vocalization types based solely on acoustics.

We embarked on such a data driven exploration of a complete vocal repertoire for the zebra 

finch, Taeniopygia guttata. We compared the results of this assumption free approach to a 

more classical approach that investigates the potential role of a small subset of chosen 

acoustical parameters for determining the information-bearing features in vocal repertoires. 

First, as ethologists who have studied the vocal behavior of this species in the field and in 

the laboratory (Elie et al., 2010; Elie et al., 2011; Mouterde et al., 2014), we were interested 

in generating a detailed description of the complete vocal repertoire of this songbird both to 

contribute to our knowledge of its natural history and to contribute to the field of animal 

communication. More precisely, by using quantitative methods and encouraging 

comparative approaches, we wanted to gain insights into the evolution of vocal 

communication signals and assess the degree with which such acoustic codes share 

similarities across species. The idea of universal codes for vocal communication is hotly 

debated (Hauser, 2002; Seyfarth and Cheney, 2003), but common principles have been found 

at different levels. At the acoustical level, relationships between the coarse sound attributes 

and the meaning of vocal signals have been shown to hold in many species (Morton, 1977); 

for example, affiliative vocalizations are often soft and low frequency sounds, while loud 

and high-frequency sounds are often alarm vocalizations (Collias, 1987). At the production 

level, the source-filter mechanism describing the making and shaping of vocal 

communication calls is also present in many species (Taylor and Reby, 2010). By 

performing a quantitative analysis of the information-bearing features in the zebra finch 

vocal signals, we determined to what extent our data support these putative universal 

principles of animal communication.

Second, as neuroethologists, we wanted to determine precisely the acoustical features that 

distinguish vocalization categories in zebra finches in order to then investigate how these 

could be represented in their auditory system and from there what neural mechanism lead to 

vocal categorizations (Bennur et al., 2013; Elie and Theunissen, 2015).

Finally, the zebra finch provided a unique opportunity to obtain a very large data set of 

vocalizations of high audio quality that would be accurately labeled in terms of their 

behavioral context and the identity of the emitter. Indeed, the vocal repertoire of the zebra 

finch has been described in the field in the complete context of its natural history (Zann, 

1996). Our own fieldwork had also given us insights on the range of vocal behaviors 

produced in the wild (Elie et al., 2010). Thus, as we describe in detail below, using this 
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knowledge and experience, we recorded a very large number of vocalizations emitted in 

clearly distinct social contexts from different groups of domesticated zebra finches in the 

laboratory. To obtain the appropriate range of vocal behaviors, these zebra finches were 

housed in enriched cages that were designed to encourage both affiliative and agonistic 

social interactions. Additional behavioral conditions (such as those required to produce 

alarm calls) were established experimentally. We were then able to describe these sounds 

using large feature spaces and to apply machine learning techniques including a novel 

regularized discriminant analysis for the identification of the acoustic features encoding the 

behavioral meaning embedded in these vocal signals.

Methods

Recording the Complete Repertoire of Captive Zebra Finches

Number of birds, age, sex, living conditions—We recorded calls and songs from 45 

zebra finches: 18 chicks and 27 adults. Chicks were all recorded while they were 19 to 25 

days old (note that only one chick was recorded on day 25 after hatch). Birds were 

considered as adults if they had molted into their mature sexual plumage, which is achieved 

around 60 days. For the 17 adults for which we had birth records, their age ranged between 2 

months (>60 days) and 7 years (17.6±5.1 months, only one female was less than 90 days 

old). Of the 18 chicks, 7 were female, 9 were male and 2 of unknown sex (LblGre0000 and 

LblGre0001). Of the 27 adults, 13 were female and 14 were male. All the birds were born in 

one of the captive zebra finch colonies housed at University of California (UC) Berkeley or 

UC San Francisco. In these colonies birds are bred in large cages containing 1 to 15 families 

and can see and vocally interact with the rest of the colony. Therefore, birds were raised in a 

rich social and acoustic environment.

For recording purposes, adults were divided into groups of 4 to 6 individuals with even sex-

ratio. Each group was housed in a cage (L = 56 cm, H = 36 cm, D = 41 cm) placed in a 

soundproof booth (L = 74 cm, H = 60 cm, D= 61 cm; Med Associates Inc, VT, USA) whose 

inside walls were coated with 5 cm of soundproof foam (Soundcoat, Irvine, CA, USA) and 

which was isolated in a room from the rest of the colony. The cage was provided with 3 nest 

boxes. Food, drinking water, grit, lettuce, bath access and nest material were provided ad 
libitum and the light cycle was 12/12. Adults were housed and daily recorded while freely 

interacting in these housing conditions for up to 4 months.

Chicks were housed with their siblings and parents in the same family cage (L = 56 cm, H = 

36 cm, D = 41 cm) in one of the breeding colony rooms. Food, drinking water, grit and nest 

material were provided ad libitum and the light cycle was 12/12. Lettuce and bath access 

were provided once a week. Before each recording session, the cage was transferred into a 

sound proof booth (Acoustic Systems, MSR West, Louisville, CO, USA) and chicks were 

physically and acoustically isolated from their parents for 30 minutes to 1 hour to elicit their 

begging calls upon re-introduction into their parents’ cage.

Recording methods: equipment, distance, methodology (selection by ear, etc)
—All recordings were performed between 02/2011 and 06/2013 using a digital recorder 

(Zoom H4N Handy Recorder, Samson; recording parameters: stereo, 44100 Hz, gain 90 or 
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67) placed 20 cm above the top of the cage for adults’ recordings or 19 cm from the side of 

the cage for chicks’ recordings. The calls recorded with a gain of 67 (to prevent clipping 

during recording sessions) were adjusted once digitized to match those recorded with a gain 

of 90 and in this manner produce a set of audio files that included relative sound level 

information. Because the position of the birds from the recording device was limited to the 

size of the cage, the vocalizations in our recordings sampled a range of intensities 

corresponding to a range of distances from the microphone of 20 to 80 cm. The behaviors of 

the birds were monitored during the recording sessions (147 sessions of 60–90 min) by an 

expert observer (JEE) placed behind a blind, into the darkness of the room, for the adults’ 

recordings, or by observation through a peephole in the sound proof booth for chicks’ 

recordings. Note that chicks were placed back one by one in their parents’ cage to record 

their Begging and Long Tonal calls to ensure identification of the calling chick. Indeed, 

chicks tend to beg and call together at exactly the same time, so recording individual calls 

was only possible by separating siblings during recording sessions. During recording 

sessions of the adult groups, the observer was tracking birds’ behavior, sampling 

vocalizations for which both the behavioral context and the identity of the emitter were 

clearly identified and taking notes of this information and the exact time of emission of the 

vocalizations for as many as possible. Then, annotated vocalizations were manually 

extracted offline from the sessions’ recordings and selected to be part of the vocalization 

library only if no overlap with noise (cage noise, wing flaps, etc.) or vocalizations from 

other individuals could be heard in the extract. Based on the distinctiveness of behavioral 

contexts and of acoustic structures, and on the grouping and nomenclature described by 

Zann in his fieldwork with wild zebra finches (Zann, 1996), vocalizations were classified 

into 11 categories: Begging calls, Long Tonal calls, Distance calls, Tet calls, Nest calls, 

Whine calls, Wsst calls, Distress calls, Thuk calls, Tuck calls and Songs. Vocalizations were 

either isolated as bouts for those emitted in bouts (Song, Begging calls, and occasionally 

Nest calls) or as individual vocalizations for all the others. A single expert observer (first 

author JEE) was used to this human based classification, as it required extensive experience 

with the birds’ behavior. Dr. Elie obtained this experience observing zebra finch vocal and 

social behaviors both in the field and in the laboratory over a period of 6 years. The 

classification yielded results that for the more descriptive acoustical measures also agrees 

with previous accounts (Zann, 1996) and is further validated here by using unsupervised 

clustering algorithms.

Vocalization Preprocessing and the Generation of the Vocalization Data Base

The audio recordings described above resulted in a vocalization library of 3405 vocalization 

bouts. To prepare the sounds for various acoustical analyses, the vocalization bouts were 

filtered, segmented into examples of single call or song syllables and time centered. First, all 

the sounds were band-pass filtered between 250 Hz and 12 kHz to remove any potential 

unscreened low and high frequency noise that would be outside of the hearing range of zebra 

finches (Amin et al., 2007) and could affect acoustical measurements such as those 

pertaining to the shape of the temporal amplitude envelope. Second, vocalization bouts were 

segmented into individual calls or song syllables. For this purpose, we estimated the 

sequence of maxima and minima in the temporal amplitude envelope. The amplitude 

envelope was estimated by full rectification of the sound pressure waveforms followed by 
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low-pass filtering below 20 Hz. The maxima above 10% of maximum overall amplitude and 

minima below this threshold were found. When successive maxima were found without 

interleaved minima, the maximum with largest amplitude was picked. Similarly, successive 

minima were eliminated by choosing the one with the smallest amplitude. This succession of 

minima and maxima were used to cut the vocalization bouts into individual calls or 

syllables. Vocalization segments shorter than 30 ms were ignored. Third and finally, we 

generated vocalization sound files that were all of the same length and time aligned. This 

standard representation was key for the subsequent analyses. The length of these 

vocalization segments was chosen to be 350 ms to accommodate the longest vocalizations 

with clear start and finish in our vocalization library (female distance calls). Vocalizations 

segments that were shorter than 350 ms were padded with zeros and sounds longer than 350 

ms were truncated. The vocalizations were aligned by finding the mean time and centering 

this time value at 175 ms. The mean time is obtained by taking the amplitude envelope as a 

density function of time as described below.

This pre-processing yielded a vocalization database of 8136 calls and song syllables from 45 

birds. The number of vocalizations and birds recorded varied among categories as shown on 

Table 1.

Acoustical Feature Spaces

To describe the acoustical properties that characterized each vocalization type we used four 

distinct acoustical feature spaces that were used in independent analyses. In each of these 

feature spaces, sounds were described by a number of parameters that were obtained from a 

series of nonlinear operations on the sound pressure waveform. These acoustical parameters 

were used to describe the information-bearing features of the sounds. These acoustical 

feature spaces were chosen because, as compared to the raw sound pressure waveform, these 

representations were closer to perceptual attributes of the sound (e.g. fundamental frequency 

and pitch), were more intuitively understood (e.g. RMS and intensity) and/or could have 

provided the non-linear transformations required for vocalization categories to be segregated 

with linear decision boundaries.

First, we used an acoustical feature space that summarized spectral and temporal envelopes’ 

acoustical structure as well as fundamental frequency features since these are easily 

interpretable and have been widely used by bio-acousticians. Parameters in this acoustical 

feature space can also be directly associated with perceptual attributes (albeit human based). 

We called these parameters the Predefined Acoustical Features (PAFs).

Second, we used a complete and invertible spectrographic representation. This 

representation has multiple advantages. Being invertible, it does not make any a priori 
assumptions on the nature of the information-bearing acoustical features. It is also easily 

interpretable since results such as the discriminant functions obtained in linear discriminant 

analysis (LDA) or logistic regression can be displayed in spectrographic representation. 

Moreover, such results can then easily be compared to neural response functions obtained 

from single neurons that are frequently described in terms of spectro-temporal receptive 

fields (Theunissen and Elie, 2014), allowing a direct assessment of potential mechanisms for 

behaviorally relevant neural discrimination. The disadvantage of the spectrographic feature 
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space is that it is high dimensional and that it requires additional techniques in statistical 

regularization (dimensionality reduction) as described below.

Third, we extracted the modulation power spectrum (MPS). The MPS is the joint temporal 

and spectral modulation amplitude spectrum obtained from a 2D Fourier Transform of the 

spectrogram (Singh and Theunissen, 2003). The MPS is used to further summarize the joint 

spectral and temporal structure observed in the spectrogram by averaging across features 

that occur with different delays or frequency shifts. The MPS could therefore be a powerful 

representation as it offers a shift invariant of the information present in spectrograms and is 

able to do so with fewer dimensions by focusing on appropriate regions of temporal and 

spectral modulations, mostly in the lower or intermediate frequencies (Singh and 

Theunissen, 2003; Woolley et al., 2005). Results in the MPS feature space can also be 

compared to those found in auditory neurons (Woolley et al., 2009).

Fourth, we extracted the Mel Frequency Cepstral Coefficients (MFCC). The MFCC 

representation is similar to the MPS since cepstral coefficients are obtained from the Fourier 

Transform of time slices in the spectrogram. The MFCC differs from the MPS in that it 

starts with a spectrographic representation obtained from a Mel Frequency filter bank, 

reflecting the logarithmic frequency sensitivity of the vertebrate auditory system at high 

frequencies. As opposed to the MPS, in MFCC the temporal information is also kept in the 

time domain (and not transferred to the temporal modulation domain). MFCCs are 

commonly and successfully used in speech processing and speech recognition algorithms as 

they succinctly describe essential information-bearing structures in speech such as formants 

and formant sweeps (Picone, 1993). MFCC have also been used successfully to study animal 

vocalizations (Cheng et al., 2010; Mielke and Zuberbühler, 2013). We added the MFCC 

representation here primarily to compare the classification performance of the new 

classifiers we propose to those of the classifier used in these previous studies.

Predefined Acoustical Features (PAFs)—Our first sets of parameters described the 

shape of the frequency power spectrum (also called the spectral envelope here), the shape of 

the temporal amplitude envelope and features related to the fundamental frequency (Figure 

1). The frequency power spectrum was estimated using the Welch’s averaged, modified 

periodogram with a Hanning window of 42 ms and an overlap of 99%. The temporal 

envelope was obtained by rectifying the sound pressure waveform and low-pass filtering 

below 20 Hz. Note that the temporal amplitude envelope is in units of pressure amplitude 

while the spectral envelope (or frequency power spectrum) is in units of pressure square 

(power). From these envelopes we obtained 15 acoustical parameters: 5 describing temporal 

features, 8 describing spectral features and two describing the intensity (or loudness) of the 

signal.

The shapes of the amplitude envelopes (spectral and temporal) were described by treating 

the envelopes as density functions: the envelopes were normalized so that the sums of all 

amplitude values (in frequency or time) equal 1. We quantified the shape of these 

normalized envelopes by estimating the moments of the corresponding density functions: 

their mean (i.e. the spectral centroid for the spectral envelope Mean S and temporal centroid 

for the temporal envelope Mean T), standard deviation (i.e. spectral bandwidth Std S and 
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temporal duration Std T), skewness (i.e. measure of the asymmetry in the shape of the 

amplitude envelopes, Skew S and Skew T), kurtosis (i.e. the peakedness in the shape of the 

envelope, Kurt S and Kurt T) and entropy (Ent S and Ent T). The entropy captures the 

overall variability in the envelope; for a given standard deviation, higher entropy values are 

obtained for more uniform amplitude envelopes (e.g. noise-like broad band sounds and 

steady temporal envelopes) and lower entropy values for amplitude envelopes with high 

amplitudes concentrated at fewer spectral or temporal points (e.g. harmonic stacks or 

temporal envelope with very high modulations of amplitude).

In addition, the first, second and third quartiles (Q1, Q2, Q3) were calculated for the spectral 

envelope: 25% of the energy is found below Q1, 50% below Q2 (Q2 is the median 

frequency) and 75% below Q3. These additional parameters were calculated for the spectral 

envelopes as they exhibited much more structure than the temporal envelopes (see Figure 1). 

Nonetheless, the quartiles were highly correlated with each other and the spectral mean (see 

Supplementary Table 1). The average spectral envelopes and temporal envelopes for each 

vocalization type were estimated by first averaging the envelopes of all the vocalizations of 

each bird within each vocalization type, and then averaging across birds (i.e. equal weight 

per bird). The average spectral envelopes showed characteristic broad peaks of energy for 

each vocalization type that we call formants, using the acoustical definition of “formant” and 

thus not implying resonances in the vocal tract. Note that in Figure 5A, spectral envelopes 

were first normalized before average calculations to equalize the weights of the envelope 

shapes between vocalizations and avoid any masking effect due to differences of loudness 

between vocalizations.

To capture the intensity of the signal we also calculated the RMS of the signal obtained 

directly from the sound pressure waveform (RMS) as well as the peak amplitude of the 

temporal envelope (Max A).

We extracted 7 parameters describing properties related to the time varying fundamental 

extracted for each vocalization. This time-varying fundamental was extracted using a custom 

algorithm that used a combination of approaches, first identifying portions of the 

vocalization that had high degree of spectral periodicity (or pitch saliency) and then 

extracting the fundamental at these time points. To estimate pitch saliency, an auto-

correlation function was first calculated using a 33.3 ms Gaussian window with a standard 

deviation of 6.66 ms. This window was slidden along the sound pressure waveform in 1ms 

steps. The largest non-zero peak in the auto-correlation function corresponding to a 

periodicity below 1500 Hz was found. The 1500 Hz threshold was chosen so as to avoid 

detection of harmonics and favor the detection of the fundamental that is known in zebra 

finches to mostly be below 1500Hz (Tchernichovski et al., 2001; Vignal et al., 2008; Zann, 

1996). The pitch saliency was then defined as the ratio of the amplitude of that peak to the 

amplitude of the peak at zero delay (corresponding to the variance of the signal in that time 

window). The saliency was only defined for windows with a root mean square (RMS) 

amplitude above 10% of the maximum RMS found across all sliding windows spanning a 

given vocalization. The mean pitch saliency (called Sal in the figures) was estimated by 

averaging across time and is an estimate of the average “pitchiness” of the vocalization.
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For all time points where the saliency was above 0.5, we extracted a fundamental frequency. 

An initial guess for the value of this fundamental frequency was obtained from the time 

delay of the nonzero peak in the auto-correlation function. We then refined the value of that 

estimate by fitting the frequency power spectrum of the same windowed segment of the 

vocalization with the spectrum of an idealized harmonic stack. This non-linear fit not only 

provided small corrections in the guess of our fundamental frequency but also allowed us to 

quantify significant deviations in the observed power spectrum from this ideal harmonic 

stack. In particular we detected significant peaks in the spectrum (peaks above 50% of the 

maxima) that were not explained by peaks corresponding to the fundamental or its 

harmonics. These peaks were used as evidence of an inharmonic structure occurring in a 

sound segment that nonetheless had high periodicity. This inharmonic structure was often 

the result of the presence of two sound sources (double voice phenomenon), produced by the 

same bird, in the same single vocalization. On the fundamental panel of Figure 1, the 

detected time-varying pitch is shown as a black line and the extraneous peaks of energy as 

green segments. The second voice parameter (2nd V in Figures 1 & 8) is defined as the 

percent of the time when a fundamental is estimated and where a second voice is found. The 

peak 2 parameter (Pk 2 in Figures 1 & 8) is the average frequency of these second peaks. 

The other fundamental parameters describe the time varying fundamental: its mean over 

time (mean F0 in Figures 1 and 8), its maximum (Max F0 in Figures 1 and 8), its minimum 

(Min F0 in Figures 1 and 8), and its coefficient of variation (CV F0 in Figures 1and 8), 

which is a measure of frequency modulation.

Overall 22 acoustical parameters describing the temporal amplitude envelope, the frequency 

spectrum and the time varying fundamental were obtained. These PAFs were first used to 

qualitatively describe the defining acoustical features of each vocalization category and then 

used as inputs to classifiers to quantify the validity of these features to detect vocalization 

types.

Spectrogram—Our second feature space is the complete spectrographic representation of 

each vocalization (Figure 2). The spectrograms were obtained using Gaussian windows of 

spectral bandwidth of approximately 52 Hz (corresponding to the “standard deviation” 

parameter of the Gaussian). The corresponding temporal bandwidth is approximately 3 ms 

(or exactly: 1/(2π*52)). The spectrogram had 231 frequency bands between 0 and 12 kHz 

and a sampling rate of 1017 Hz yielding 357 points in time for the 350 ms window used to 

frame each vocalization. The total number of parameters describing the sounds in this 

spectrographic representation was therefore 82,467. This spectrographic representation is 

invertible (Cohen, 1995; Singh and Theunissen, 2003) and over-complete. Thus, on the one 

hand, it has the potential to provide a full description of the sound – one with no a priori 
assumptions on the nature of the information-bearing features. On the other hand, these 

spectrograms could not be “averaged” to obtain a mean description of a vocalization type 

and, given the high-number of parameters, they could not be used, without further data 

reduction methods, as inputs to classifiers. In this study, we show how one can combine 

spectrograms with principal component analysis (PCA) and regularization to use them in 

classifiers. We also show that logistic regression can also be used to obtain a “defining” 

spectrographic representation for each vocalization type. In this manner, we were able to 
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circumvent this problem of dimensionality and use a data-driven approach to describe the 

defining acoustical features.

Modulation Power Spectrum—Our third feature space is the Modulation Power 

Spectrum (MPS; Supplementary Figure 1). The MPS is the modulus square of the 2-D 

Fourier Transform of the log spectrogram. Spectrograms were calculated as described above. 

The MPS was then obtained as follows. First, the log spectrogram S(t,f) can be written as:

S(t, f ) = log 1
2π∫ e− j2π f τs(t + τ)h(τ)dτ

where s is the sound pressure waveform and h is the Gaussian window centered at t. The 

MPS is obtained from the Fourier expansion of S(t,f) written in discrete form as:

S(t, f ) = A0 + ∑
j, k

S j, k(ωt, j, ω f , k)

where the Sj,k are the 2D Fourier terms

S j, k(ωt, j, ω f , k) = A j, k cos (2πωt, jt + 2πω f , k f + φ j, k) .

Here ωt,j describes the modulation frequency of the amplitude envelope along the temporal 

dimension and has units of Hz. The parameter ωf,k describes the modulation frequency of 

the amplitude envelope along the spectral dimension and has units of 1/Hz. In the 

modulation power spectrum, Aj,k is plotted as a function of ωt,j (shown on the x-axis) and 

ωf,k (shown on the y-axis), as done in Figure Supplementary Figure 1.

The time-frequency scale of the spectrograms used in the MPS (here 3ms and 52 Hz) 

determines the temporal and spectral Nyquist limits of the modulation spectrum (~ 167 Hz 

and 9.6 cycles/kHz respectively). Because natural sounds obey power law relationships in 

their MPS (Singh and Theunissen, 2003), most of the relevant modulation energy is found at 

lower frequency modulations, for example, for zebra finch vocalizations, below 40 Hz and 4 

cycles/kHz. Therefore, we chose not to represent higher frequency modulations, which 

greatly reduced the number of parameters. In addition, we also ignored the phase spectrum 

(φ j,k)further reducing by half the number of parameters. Our chosen MPS feature space was 

ultimately based on 30 ωt,j slices (between −40 and 40 Hz) and 50 ωf,k slices (between 0 

and 4 cycles/kHz) yielding 1500 parameters for our MPS feature space (vs. 82,467 for the 

spectrogram). Nonetheless and as for the spectrographic representation, PCA was used as a 

further data reduction technique before using the MPS as input in classifiers.

Mel Frequency Cepstral Coefficients—Our fourth feature space was the Mel 

Frequency Cepstral Coefficients (MFCCs; Supplementary Figure 2). The MFCCs are 

calculated from a spectrogram obtained with a frequency filter bank with varying 

bandwidths. We used N=25 frequency channels between 500 and 8000 Hz spanning the 

most sensitive region of the zebra finch hearing range (Amin et al., 2007). The Mel 
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frequency filters are triangular in shape with center frequencies uniformly spaced on the Mel 

frequency scale with 50% overlap. In natural logarithmic units, the Mel frequency scale is 

given by (O’Shaughnessy, 1999):

f Mel = 1127 × log (1 + f Hz 700)

The amplitude in these bands was estimated in a 25 ms sliding analysis window with a 10 

ms frame shift. An example of such a Mel Spectrogram can be seen on Supplementary 

Figure 2. The cepstral coefficients were then obtained from the discrete cosine transform of 

the log amplitude of this Mel Spectrogram. Just as we did for the MPS, we truncated the 

cepstral coefficients at M=12 (out of 25 possible) since higher cepstral coefficients 

(corresponding to higher spectral modulations) have significantly less power. Ultimately our 

MFCC representation had 12 cepstral coefficients for 33 time slices for a total of 396 

parameters. PCA was also used to further reduce the number of parameters before using 

these parameters as inputs in classifiers.

Statistical Analyses

Statistically significant differences in mean values across vocalization categories for the 22 

PAFs were assessed using linear mixed-effects models. In this analysis, individual acoustical 

parameters (e.g. the fundamental frequency) were the predicted variable, the vocalization 

type was the only fixed effect (the predictor) and the bird identity was taken as the random 

effect. Furthermore, to prevent pseudo-replication effects, all the data for a given bird were 

averaged before performing the analyses for each vocalization type (Nakagawa and Hauber, 

2011). In this manner, data from each bird were given equal weight. The effect size (as a 

main fixed effect of vocalization type) was reported as the adjusted R2 of the model, and the 

statistical significance was calculated from a likelihood ratio test, which in this case is 

equivalent to an F-test. As post-hoc tests and to assess the differences in acoustical 

parameters for each vocalization type, we performed a Wald test to assess whether the 

estimated coefficient (corresponding to the adjusted average value for a particular acoustical 

parameter) for each vocalization type was significantly different from the average value 

obtained across all vocalization types. We also report the 95% confidence intervals for each 

of the coefficients. The complete statistical results from these mixed-effect models are 

shown in the supplementary material (Supplementary Table 1).

We also used mixed-effect models to assess the effect of sex on acoustical differences. In 

this model, the predicted variable was the acoustical parameter, the main fixed effects were 

the vocalization type, the sex and the interaction (Type*Sex) and the random effect was the 

bird identity. Statistical significance for the effect of Sex was then obtained from a 

likelihood ratio comparing the model that included Type, Sex and the interaction to the 

model that only included Type. When this test was significant, post-hoc tests were 

performed to determine which vocalization types were different between males and females. 

In the post-hoc test, data from each vocalization type were analyzed separately and a linear 

model was used to test the significance of the unique fixed factor Sex. This test was 
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equivalent to a t-test used to assess the differences on the average values of that acoustical 

parameter obtained for each male and female bird.

Classifiers

To determine the combination of acoustical features that can discriminate between 

vocalization types and to quantify the degree of discrimination among these categories, we 

compared two multinomial supervised classifiers using as input the representations in our 

four feature spaces (Figures 1, 2, Supplementary Figures 1 and 2). The two supervised 

classifiers are the Random Forest (RF) and the Fisher Linear Discriminant Analysis (FLDA). 

To use the nomenclature of supervised classifiers, the vocalization types will be referred to 

as classes in this next section. We also used an unsupervised classifier (clustering analysis): 

a mixture-of-Gaussians that can be used efficiently to fit multi-modal and multivariate 

probability density functions.

Random Forest—A random forest (RF) is a powerful supervised classifier that uses a set 

of classification trees in a bootstrap fashion to both prevent over-fitting and better explore 

potential partitions of the feature space (Breiman, 2001). RFs have been shown to often 

provide the best performance in classification tasks including in the field of bioacoustics 

(Armitage and Ober, 2010). In this study, we used RF to obtain estimates of an upper bound 

on classification performance. The measure of this upper bound was critical in order to 

validate the results obtained for the FLDA. We used Random Forests of 200 trees, with a 

minimum of 5 data points per leaf and a uniform prior for class probabilities to avoid any 

bias towards categories that would be better represented in the dataset.

Fisher Linear Discriminant Analysis—Our second classifier was the classical Fisher 

linear discriminant analysis (FLDA). The FLDA finds linear combination of acoustical 

features to maximally separate classes while taking into account the within-classes 

covariance matrix. These discriminant functions are the eigenvectors obtained from the ratio 

of the between-classes and within-classes covariance matrix. Discriminant functions are 

ordered by the decreasing value of the eigenvalue (i.e. the function where the ratio of the 

between and within variance is the greatest is first). Linear decision boundaries within the 

linear subspace spanned by all significant discriminant functions can then be used to classify 

sound into their respective classes. In our implementation, we assumed that the within-class 

covariance was the same for all classes. The great advantage of the FLDA over the RF is that 

it allows one to examine the form of the discriminant functions and thus easily interpret the 

acoustical factors that could be used for discrimination. The disadvantage of the FLDA is 

that the classes might not be linearly separable in a particular acoustical feature space.

Logistic Regression—To further facilitate the interpretation of our results, we also 

performed a series of logistic regression analyses, one for each vocalization type. The goal 

of these analyses was to find the unique linear combination of acoustical features that would 

allow one to separate one vocalization type (or class) from all the others. The logistic 

regression was only performed on the acoustical feature space based on the full 

spectrograms. The inputs to the logistic regression were taken to be the coordinates of each 
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vocalization in the subspace defined by the significant discriminant functions obtained in the 

FLDA.

Performance: Cross-Validation and Regularization—Just as mixed-effects modeling 

is required in the statistical analyses described above to potentially correct for bird 

dependent effects, the same care must be taken when training and testing the multivariate 

classifiers (Mundry and Sommer, 2007). To do so, we used a cross-validation procedure that 

took into account the nested format of our data. More specifically, we used a training data 

set where, for each vocalization type, all the data from a particular bird were excluded, and 

different birds could be excluded for different vocalization types. The “excluded” data were 

then used as our validation dataset. In this manner, the classification was assessed for 

vocalizations from a given bird and class that were not included in the training, allowing us 

to directly assess the generalization of the classifier. Two hundred (200) different 

permutations of excluded birds per vocalization type were obtained to generate 200 training 

and validation data sets. These performance data were sufficient to generate stable confusion 

matrices shown on Figure 10. We also used these performance data to calculate confidence 

intervals on percent of correct classification using a maximum likelihood binomial fit.

The cross-validation was also used as part of a regularization procedure (see Figure 2). For 

acoustical feature spaces that included a large number of parameters (e.g. the spectrogram) 

both the FLDA and RF classifiers generated solutions that over fitted the data. To prevent 

over-fitting, we used principal component analysis (PCA) as a dimensionality reduction step 

and tested the performance of the classifiers as a function of the number of PCs as a 

regularization step. As shown on Figure 2, best performances were obtained with 

approximately 40 PCs when using the Spectrogram as a feature space. In order to use the 

same number of parameters for all our large feature spaces, 40 PCs were used for both the 

RF and the FLDA and for the feature space based on the Spectrogram, the MPS and the 

MFCCs. The percent of the variance in the data explained by these 40 PCs is shown on 

Figures 2, Supplementary Figures 1 and 2. Using PCA as a regularization step in FLDA is 

equivalent to assigning a Wishart prior on the within-group covariance matrix of features 

(assumed to be the same for each group). This technique is called Regularized LDA or 

RLDA (Murphy, 2012, p. 107). Here we use both the regularization obtained from the PCA 

(by systematically evaluating the goodness of fit obtained by varying the number of PCs) 

and the dimensionality reduction obtained in the FLDA (Murphy, 2012, p. 271). We will call 

this technique the regularized FLDA or RFLDA.

Clustering analysis: a mixture-of-Gaussians used as an unsupervised 
Classifier—An unsupervised classifier (also known as a clustering algorithm) was used to 

further determine whether the vocalization types defined behaviorally did indeed form 

separate clusters in acoustical feature spaces. Unsupervised classifiers decompose the 

generally multi-dimensional distribution of a dataset into a sum of distributions. In the case 

of a mixture-of-Gaussians, the component distributions are all multi-dimensional Gaussian 

distributions. If the weights of these Gaussian component distributions are approximately 

equal and when the component distributions are well separated (e.g. separated by one 

standard deviation), then the joint distribution is shown to be multi-modal, suggestive of the 
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presence of different groups. Note that it is possible that a set of vocalization types (defined 

behaviorally) could form a unimodal distribution and still be separable using a supervised 

classifier as long as the different vocalization types are found predominantly at different 

ranges of this unimodal distribution. The mixture-of-Gaussians unsupervised classifier is 

thus stringent in that it will only generate “positive” answers for groups that are separable in 

the sense of being multi-modal.

In the mixture-of-Gaussians modeling, all the data points (the n vocalizations) are used as a 

sample of the probability density function that is modeled. Each Gaussian component is 

defined by its weight (one value), its mean value in the feature space (in the k-dimensional 

space so a k element vector) and its covariance matrix (a symmetric k*k matrix). For a k 
dimensional feature space, each component Gaussian has therefore 1+k+(k*(k+1))/2 

parameters. For a mixture-of-Gaussians of m components, the model will have m*(1+k+

(k*(k+1))/2) parameters. These parameters are fitted by maximizing the likelihood using the 

Expectation-Maximization algorithm (EM). The EM algorithm finds a local minimum that 

depends on the initialization values. Thus, we ran multiple fits using different initialization 

values for each mixture model (i.e. for each value of m) and used the one that gave us the 

maximum likelihood. To compare the goodness of fit of Gaussian mixtures with different 

number of components (m), we used the Bayesian Information Criterion (BIC), which takes 

into account the negative log likelihood but penalizes for the number of parameters relative 

to the number of sample points (n). Since k is fixed the BIC penalizes for higher numbers of 

Gaussian components. The model with the smallest BIC is deemed to be the best.

In our analysis, we applied the mixture-of-Gaussians to specific call types (e.g. Tet calls) to 

determine whether they could actually be composed of multiple vocalization types or, in the 

contrary, to specific sets of two call types to determine whether they indeed formed separate 

clusters acoustically. For these analyses, we used the 22 PAFs, as described above and in 

Figure 1. The optimal number of Gaussian components was chosen by finding the best 

trade-off between having the smallest BIC and obtaining close to uniform relative weights of 

the Gaussian components. In the case where multiple call types were combined to be 

modeled by the Gaussian mixture, we could then calculate the proportion of each call type in 

the groups determined from the Gaussian mixture (as shown in Figures 9 and Supplementary 

Figure 4).

Software

All analyses were performed using custom code written in Matlab, using the following high-

level functions when appropriate. The MFCCs were calculated using the mfcc function 

provided by Kamil Wojcicki to match the algorithm in the Hidden Markov Toolkit for 

speech processing known as HTK (Young et al., 2006). The mixed-effect modeling was 

performed using the Matlab function fitlme. The RFLDA was estimated with a custom 

Matlab script that used the Matlab function manova1 to estimate the FLDA for different 

PCA subspaces. The random forest classifier was trained using the Matlab function 

TreeBagger. The logistic regression was performed using the Matlab function glmfit. The 

mixture-of-Gaussian modeling was performed using the Matlab function fitgmdist.
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Results

In the following sections, we first describe qualitatively and quantitatively the different types 

of vocalizations produced by domesticated zebra finches. We then show how we applied 

multiple approaches in order to reveal the acoustic signature of each vocalization type. For 

this purpose, we isolated over 8000 calls and song syllables and used four independent 

representations for these vocalizations: various measures in the temporal and spectral 

domains that we call the Predefined Acoustical Features (PAF) as well as three 

representations in the joint spectro-temporal domain provided by the spectrogram, the 

modulation power spectrum and a time varying cepstrum (see methods, Figures 1–2, 

Supplementary Figures 1–2). We compare the results obtained from these different 

representations of the sounds (or feature spaces) and two distinct classification algorithms. 

All of our analyses emphasize the importance of the spectral shape and of the pitch saliency 

as the main acoustical parameters that code meaning in zebra finches’ vocalizations.

The vocal repertoire of the domesticated zebra finch

On Figure 3, we show spectrograms of examples of each of the vocalization types that we 

recorded from our domesticated zebra finch colony. We classified these vocalizations by 

assessing the behavioral context in which they were emitted and by ear, having learned their 

acoustical signatures during previous experiments (Elie et al., 2011). Our classification also 

followed the grouping and nomenclature described by Zann (1996) in his fieldwork with 

wild zebra finches. Indeed, we found that domesticated zebra finches housed in groups and 

in living conditions that also promote nesting, foraging, defensive and alarming behaviors 

produced all vocalization types described by Zann with the potential exception of the Stack, 

a call mainly produced just before takeoff. A Stack call has also been described by Ter Maat 

et al (2014) in captive animals as a contact call used somewhat interchangeably with the soft 

and short contact call, called the Tet call. As we will discuss below, the call described by Ter 

Maat et al (2014) is most certainly included in our Tet category. Based on different 

behavioral contexts, we also made a distinction between the alarm call described by Zann 

(Thuk call) and another new alarm call that we named the Tuck call. Furthermore, because 

the two types of nest calls named by Zann Arks and Kackles constituted a continuum in our 

recordings (shown below), we decided to group all of them in the same vocalization type, 

Nest call. Note also that although we were able to record Copulation calls as described by 

Zann (1996), the quality and the quantity of recordings for this particular vocalization type 

were not sufficient to include it in our analysis (but see one example as Supplementary 

Sound File 5). Finally, we further grouped the vocalization types into calls produced only by 

juveniles (top row in Figure 3, blue hues), calls and song produced in affiliative contexts 

(second and fourth rows in Figure 3, purple/black hues) and non-affiliative calls (third row, 

orange hues).

In addition to qualitatively describing each vocalization type based on its characteristic 

spectrographic features, we quantified differences across vocalization types using the PAFs 

measures that described the temporal envelope, the spectral envelope and the fundamental 

frequency of the sounds (see Figure 1 and Methods). Those PAFs measures were aimed to 

fully describe the spectral, loudness, duration and pitch characteristics of the vocalizations. 
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Results based on those measures are shown in Figures 4–7. Statistical analyses using linear 

mixed effect models showed that most of these PAF measures carried some information 

about vocalization types as shown in Figure 8. For each PAF, the correctly weighted mean 

value of each vocalization type with its 95% confidence intervals obtained from the mixed 

effect model is shown in an additional table (see Supplementary Table 2). This table also 

reports the P-values obtained for the comparisons of each category mean value to the mean 

over all categories (Wald Test). In the text below, when we state that a particular acoustical 

measure (such as the fundamental) is significantly different between two vocalization 

categories, we mean that the 95% confidence intervals for the two categories do not overlap. 

Finally, from the average spectral envelope of each vocalization type shown in Fig. 5a, we 

obtained spectral peaks that we called formants using the acoustical definition of this word. 

The frequency of these formants is shown on Table 2.

Juvenile Calls

Begging Calls: On the fourth day after birth, chicks start to emit Begging calls that are 

described as “soft cheeping sounds”, while gaping to elicit feeding behavior in their parents 

(Zann, 1996). The acoustic structure of this vocalization changes along development to 

become the loud and noisy broadband sounds emitted in long bouts by 15-days-old to 40-

days-old chicks (see ontogeny descriptions of this call in Zann, 1996 and Levrero et al., 

2009). In the present study, we recorded the mature begging call of 19-days-old to 25-days-

old fledglings (0 to 4 days after the chick got out of the nest; Figure 3). Begging calls were 

recorded while the chick was displaying the typical head twisted open beak posture of zebra 

finches. Begging calls were among the three vocalizations in the vocal repertoire that were 

the “noisiest” on average as quantified by our measure of pitch saliency (see Fig. 7B; Wald 

test, P <10−4). Note however that Begging calls exhibited a very large range of pitch 

saliencies and were far from lacking harmonic structure as it can be seen in the examples of 

Figures 3 and Supplementary Figure 3. In addition, Begging calls had the highest occurrence 

frequency of double-voices (29% vs 13% average, Wald Test P<10−4). We detected the 

occurrence of two voices by the presence of harmonics in the spectrogram that were not 

multiples of the principal fundamental. The measure of frequency of double-voices was 

conducted on sections of the call that had harmonic structure (defined by a pitch saliency > 

0.5). On Supplementary Figure 3, we show examples of calls with two voices, including a 

Begging call. Double voices were quite common in the two juvenile vocalizations and might 

in these cases reflect an immature control of the bird’s vocal organ. In other avian species, 

double voices can generate frequency beats (Robisson et al., 1993) or rapid switching of 

notes in songs (Allan and Suthers, 1994), both of which might be required to produce 

behaviorally effective signals and provide additional information about the identity of the 

caller. In zebra finches, the presence of double voices could be informative to distinguish 

among call categories and, in particular, to further distinguish juvenile calls from adult calls. 

Begging calls had also a very distinctive spectral envelope characterized by two high 

frequency formants (F3 and F4) between 4 and 8 kHz (visible on the spectrogram example 

of Figure 3 and see Figures 4 and 5a and Table 2). These high-frequency resonances were 

unique to this call type. As a result, the mean frequency of their spectral envelope, or 

spectral mean, was significantly higher than that of all vocalization types (Mean S = 5430 

Hz vs. the overall mean of 2970 Hz, Wald Test P<10−4; Figure 7C and Supplementary Table 
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2). Begging calls also had a relatively large frequency bandwidth (Figure 7D). In terms of 

temporal properties, Begging calls displayed an average duration (Figures 6B and 7E; Wald 

Test P=0.48) but with a very large spread (Figure 7E), and this range of durations was 

observed within birds since Begging call bouts are often composed of calls of varying 

lengths (see the spectrogram shown in Figure 3). Zann (1996) noted that Begging calls were 

among the loudest in the repertoire and could be heard as far as 100m. Our measurements 

support that observation as Begging calls were on average the second loudest vocalization 

after the Distance call, although we also observed a very large spread of intensities (Figures 

6A and 7F). Because of all of these unique acoustical properties, Begging calls were very 

easily classified by discrimination algorithms, as we will show below (Figures 10 and 11B).

Long Tonal Calls: The Long Tonal call is a contact call produced by chicks when they are 

about to fledge (from 15 days post-hatch). Fledglings spontaneously emit this call when they 

lose visual contact with members of their family and in response to the Distance calls of 

their parents or the Long Tonal calls of their siblings (Zann, 1996). Here we report the 

analysis for Long Tonal calls of fledglings recorded 1 to 4 days after they flew out of the 

nest (21–25 days-old chicks). The Long Tonal call is a precursor of the adult Distance call 

and starts to change slightly from 22 days after hatch (Zann, 1996). Therefore, the Long 
Tonal call shares many similarities with Distance calls. Long Tonal calls were highly 

harmonic as quantified by very high pitch saliency values (Fig 7B, Wald Test P<10−4), with 

a range of fundamental frequencies that was very similar to that of the adult Distance call 

(Fig 7A). The average fundamental was 625 Hz for females and 671 Hz for males and 

although this difference was not statistically significant (P=0.15; post-hoc mixed-effect 

model; see also the differences in range between males and females), it showed a trend that 

was in accordance with the sex differences observed for the adult Distance call, as described 

below. The shape of the frequency spectrum and the location of the first two formants in 

Long Tonal calls were also very similar to that of Distance calls, with the juvenile call being 

shifted slightly towards higher frequencies and having a slightly larger bandwidth (Figures 

4, 5A and 7D and Table 2). Long Tonal calls also had similar durations to Distance calls and 

were among the longest calls in the repertoire (measured as a temporal width, Std T: 43.8 ms 

vs. the overall mean of 34.7 ms; Figures 6B and 7E, Wald Test P=0.0003). Finally, the 

loudness of Long Tonal calls was middle range compared to other vocalization types and in 

particular those calls were significantly softer than the adult Distance call (see 

Supplementary Table 2; Figures 6A and 7F).

Juveniles also produced Distress calls and Tet calls that shared the acoustical characteristics 

of adult calls described below. Examples of these calls are given as additional sound files 

(see Supplementary Sound File 6 for a juvenile Distress call and Supplementary Sound File 

7 for a juvenile Tet call). However, we did not record sufficient juvenile Distress and Tet 
calls to quantify any differences, were they to exist.

Affiliative calls

Tet Calls and Distance Calls: Adult zebra finches produce two contact calls: the shorter 

and softer Tet call for short-range communication and the louder and longer Distance call for 

long-range communication (Mouterde et al., 2014; Perez et al., 2015; Zann, 1996). The Tet 
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call is the most frequent vocalization as it appears to be produced in an almost automatic and 

continuous fashion when zebra finches move around on perches or on the ground. These 

“background” Tet calls form an almost continuous hum and do not appear to produce a 

particular response in the nearby birds, although in the wild Elie et al. (Elie et al., 2010) 

show that Tet calls could also be used for mate recognition in nesting birds. Increases and 

decreases in Tet call frequency might also be informative: a sudden decrease in Tet call 

frequency could signal an unusual event, and the intensity and frequency of Tet calls also 

increases before takeoffs (Zann, 1996). Note also that Tet calls are components along with 

Nest calls and Whine calls of the quiet duos that mates perform at nest sites (Elie et al., 

2010). In a recent analysis of short-range contact calls produced by captive zebra finches, 

Ter Maat et al. (2014) distinguish Tet calls from Stack calls, where Tet is used to describe 

the slightly shorter and more frequency modulated set of contact calls and Stack is used to 

describe the calls that are presented as flat harmonic stacks in spectrographic 

representations. To investigate whether these two types of soft contact calls belong to a 

single acoustical category or to two distinct acoustical groups, we performed unsupervised 

clustering on all the soft contact calls we recorded and labeled as Tets. The unsupervised 

clustering was performed separately on male and female Tets because, as we will show 

below, Tets are also sexually dimorphic. Here the Tets were represented by the 10 first 

principal components (10 PCs) obtained from the 22 PAF (see Methods and Figure 1). As 

shown on Supplementary Figure 4(B and C), female and male Tet calls can be clustered into 

two groups, one with low values of coefficient of variation (CV) for the fundamental 

(corresponding to the description of the Stack by Ter Maat et al., 2014) and one with high 

CV values for the fundamental (corresponding to the description of the Tet by Ter Maat et 

al.). Because, in our observations, these two acoustically distinct call types were produced 

during the same behavioral context, we grouped them together and designate them as Tets 
from here on.

Distance calls are produced when zebra finches are out of immediate visual contact with the 

colony, their mate or the fledglings they care for. Distance calls can be produced both during 

flight and while perched. These loud contact calls carry individual information and elicit 

orienting responses and vocal callbacks both in juveniles and adults, and promote reunions: 

they are used for sex, mate, parent or kin recognition (Mouterde et al., 2014; Mulard et al., 

2010; Perez et al., 2015; Vicario et al., 2001; Vignal et al., 2004). In our recordings, the 

Distance calls, the Long Tonal calls and the Tet calls had the highest levels of pitch saliency 

(Figure 7B). The sharp harmonic structure of all these contact calls can be seen in the 

spectrogram examples shown in Figure 3. Of the three harmonic contact calls, Tet calls had 

the lowest fundamental frequency (Figure 7A; male and female Mean F0 Tet = 558 Hz, 

Distance = 680 Hz, Long Tonal = 655 Hz; see Supplementary Table 2). Tet, Distance and 

Long Tonal calls could also be distinguished by their spectral envelope and formant 

frequencies: both Distance and Long Tonal calls were characterized by the highest first and 

second formants (see Figure 5A and Table 2), while Tet calls had those formants at average 

frequencies. As a result the spectral mean of Tet calls was significantly lower than that of 

Distance and Long Tonal calls (Tet = 2280 Hz, Distance = 3580 Hz, Long Tonal = 3600 Hz; 

see Figure 7C and Supplementary Table 2). Tet calls also differed in their duration and 

loudness. Tet calls were very short calls while Distance and Long Tonal calls were among 
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the longest (Tet Std T = 23.9 ms; Distance = 47.7 ms; Long Tonal = 43.8 ms; see Figures. 

6B and 7E and Supplementary Table 2). Tet calls were also much softer than Distance calls 

(see Figures 4, 6A and 7F, and Supplementary Table 2) as one might expect given their 

function.

Nest Calls: Potential nest sites and nests are the scenes for particular soft calls: the Nest 
calls and the Whine calls. Nest and Whine calls are emitted by paired birds around 

reproductive activities: when they are searching for a new nest, when they are building their 

nest and almost each time they relieve each other at the nest during the brooding period 

(Zann, 1996; Elie et al. 2010; Gill et al., 2015). These calls are emitted in sequence either by 

one single partner (especially by the male when leading the nest search; Zann, 1996) or by 

both birds that are then performing soft duets using these calls in combination with Tet calls 

(Elie et al. 2010). Zann divided Nest calls into Ark and Kackle calls. According to Zann, 

Kackles are shorter raspy sounding loud calls produced initially around potential nesting 

sites. Arks are longer and softer sounds with a harsh sound often coming in pairs as in “ark-

ark”. Although in captivity we also recorded Nest calls that could be acoustically classified 

using Zann’s descriptions as Ark and Kackle calls (see examples on Figure 3), we found that 

our Nest calls were emitted in identical behavioral context and were best described by a 

unimodal distribution, as revealed by the unsupervised clustering algorithm (see 

Supplementary Figure 5). Thus, we decided not to separate them into subcategories. Nest 
calls were among the shortest vocalizations with durations similar to that of Tet calls and 

much shorter than Whine calls (Std T = 28 ms; see Figure 6B and 7E, Wald Test P=0.015). 

While their level of pitch saliency was far lower than that of Tet calls, it was similar to the 

mid-range pitch saliency of Whine calls (Figure 7B). The two formants of Nest calls were 

lower than the formants of Tet calls. Compared to the Whine calls, the first formants were 

identical while the second formant was relatively higher in the Nest calls. As a result, Nest 

calls had the second lowest spectral mean after Whine calls (Mean S = 2013Hz; see Figure 

7C, Wald test P<10−4). Nest calls were also among the softer ones with a level of intensity 

between that of Whine calls and Tet calls (see Figures 4, 6A, 7F; Wald test P<10−4).

Whine Calls: As for Nest calls, Whine calls are produced during early phases of pair 

bonding and around nesting activities (Elie et al., 2010; Gill et al., 2015). Birds often emit 

this vocalization while adopting a particular posture in the nest: they lay and slightly twist 

their head in the direction of their mate while fanning their tail feathers. This vocalization is 

often followed or preceded by chattering beak sounds. Whine calls are also produced during 

copulation but none of the Whine calls analyzed here were recorded during copulation (see 

Supplementary Sound File 5 for a Copulation Whine). In our recordings, Whine calls were 

harmonic sounds that had a middle level of pitch saliency (Figure 7B) but had the unique 

quality of having a slowly modulated pitch as shown in the example spectrogram on Figure 

3. Similar to Nest calls, the spectral envelope of the Whine calls was heavily skewed towards 

the low frequencies (Figures 4 and 5A). With the lowest first and second formants (see 

Figure 5A and Table 2), they had the lowest spectral mean of the repertoire (Mean S = 1835 

Hz; see Figure 7C, Wald test P<10−4). Whine calls were also the longest (Std T = 55 ms vs 
35 ms average; see Figures 6B and 7E, Wald test P<10−4) and, with the Nest calls, the 

softest vocalizations in the repertoire (see Figures 4, 6A and 7F). It is its long duration, soft 
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intensity, and varying pitch with low formant frequency that gives this call its whiny quality 

and hence its name. Whine calls were also one of the adult vocalization types with the 

highest presence of double voices (12.6% vs 9.6% for all adult calls). A Whine call with a 

double voice is shown on Supplementary Figure 3.

Non-Affiliative Calls

Wsst Calls: The Wsst call is an aggressive call often produced right before an attack on a 

conspecific by the perpetrator. Both male and female zebra finches produce aggressive calls 

when supplanting an individual that is perching close to their nest (30–20cm), especially 

when they are in the nest-building or brooding phase. This aggressive call was named the 

Wsst (Zann, 1996) to describe its short noisy sound quality that can also be described as a 

brief cat hiss (sound examples are provided along with Figure 3). As quantified by its pitch 

saliency (lowest – see Figure 7B, Wald test P<10−4) and bandwidth (largest – see Fig 7D, 

Wald test P<10−4), the Wsst call was the noisiest vocalization in our zebra finch recordings, 

a quality that it shared the most with the Begging call and the Distress call. Wsst calls also 

had a very characteristic frequency spectrum: they were dominated by a low frequency 

formant (690 Hz) followed by a second formant that was also relatively low (1.8 kHz) but 

with a power spectrum that showed a long tail of significant energy at higher frequencies 

(see Figures 4 and 5A, Table 2, as well as the example spectrograms shown in Figure 3). 

From the examples shown in Figure 3, one can appreciate the similarities and differences 

between Begging calls and Wsst calls: both calls were clearly noisy and broadband but the 

Begging calls showed the characteristic high-frequency formants while the Wsst calls 

showed the characteristic low frequency formants. This difference was also quantified by the 

significantly large differences in spectral mean (Mean S = 2.6 kHz for Wsst vs. 5.4 kHz for 

Begging and vs. 3 kHz mean across all types, Wald test P = 0.0001, see Figure 7C and 

Supplementary Table 2). Wsst calls were also among the longest in duration in the repertoire 

(Std T = 52 ms vs. overall mean 34.7 ms; Wald test P<10−4; see Figures 6 and 7E). Wsst 
calls had similar loudness as other non-affiliative calls, at the middle of the loudness range 

between the louder Distance calls and the softer affiliative calls (Figure 7F, Wald test 

P=0.035).

Distress Calls: Zebra finches produce Distress calls when they are attacked by other 

conspecifics, usually while they are escaping or being brutalized by their aggressor. Distress 
calls are noisy calls and share many similarities with Wsst calls although to our ear they 

sounded more tonal. The pitch saliency of Distress calls was measured as slightly higher 

than that of Wsst calls but a confidence interval analysis shows that this difference is not 

significant (Figure 7B, Supplementary Table 2). Similarly to the Wsst calls, the spectral 

envelope of Distress calls was characterized by low first and second formants and broad 

bandwidth (Figures 4, 5A, 7D and Table 2). Interestingly, the Distress call was the only adult 

call category to show a third formant as in the Begging call of chicks (Table 2, Figure 5A). 

Compared to Wsst calls, Distress calls were significantly slightly shorter in duration, with a 

more peaked temporal envelope (Figures 6 and 7E; see Supplementary Table 2). The 

unsupervised clustering applied to Wsst and Distress calls suggested that the distribution of 

calls is best described by two Gaussians but we also found that the two call types are equally 

well represented in these two groups (Figure 9A). Thus, the Wsst and Distress calls showed 
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a large amount of overlap and could constitute a single category with differences in pitch 

saliency and intensity/duration reflecting the degree of dominance in an aggressive conflict. 

Indeed, the performance of our classifiers revealed that Distress calls were often 

misclassified as Wsst calls (see below).

Alarm Calls: Adult zebra finches produced two alarm calls: the Thuk call, produced by 

parents and directed at chicks, and the Tuck call, a more generic alarm call. On one hand, 

Thuk calls were produced only by parenting adults when a minor sign of danger occurred 

(including slight noise from the hiding experimenter) while their own chicks were actively 

begging for food. On the other hand, Tuck calls were produced by our adult birds in the 

presence of hawks calls or the experimenter’s hands in front or in the cage. The two alarm 

calls were the shortest vocalizations produced by zebra finches (Std T: 13.6 ms for Thuk 
calls and 15.0 ms for Tuck calls; see Figures 6 and 7E, Wald test P<10−4 for both). The 

alarm calls had also a middle level of pitch saliency on a par with Whine calls (Figure 7A 

and example spectrograms in Figure 3, Wald test P=0.34 and P=0.55 for Thuk and Tuck 
respectively) and mid-levels of intensity on a par with other non-affiliative calls (Figure 7F). 

The biggest difference between Tuck calls and Thuk calls might have been in their spectral 

shape: Tucks had a higher second formant (Figures 5A. 11, Table 2), resulting in also 

slightly higher spectral bandwidth and spectral mean, both of which approached significance 

according to our conservative assessment using 95% confidence intervals (Figure 7C and 

7D, see Supplementary Table 2). These spectral differences can also be observed in the 

examples shown on Figure 3. To further convince ourselves that these two calls were 

acoustically distinguishable, we also applied the unsupervised clustering algorithm to the 

Thuks and Tucks combined. As shown in Figure 9B, the PAF distribution for these alarm 

calls was best modeled with two well separated Gaussians of approximately equal weight. 

More importantly, one group had a much higher proportion of Tucks while Thuks dominated 

the second group.

Song—Beside calls, male zebra finches also emit a more complex vocalization during 

courtship, pair bonding, and mating behavior: the Song. An example of a male Song is 

shown on the last row of Figure 3. Male zebra finch Song has been extensively described 

and analyzed in previous work given the importance of the zebra finch model system for 

understanding the neural mechanisms underlying song production and learning (e.g. 

Tchernichovski et al., 2000; Tchernichovski et al., 2001; Williams, 2004). Songs are 

composed of introductory notes followed by multiple motifs each made of a stereotyped 

sequence of song elements or syllables. Song syllables vary in spectro-temporal structure 

and include harmonic stacks, down-sweeps, up-sweeps, high frequency tones, inverted u 

notes and noisy bursts. Given this variety of notes, it was not surprising on the one hand to 

see that Song exhibited intermediate average values and large ranges for all of the PAF 

shown in Figure 7. On the other hand, Song syllables appeared to share some acoustical 

features, such as typical spectral envelope shape and location of formants (Figures 4, 5A, 

Table 2). This is clearly seen on the example spectrogram of Figure 3. The formants of Song 
syllables were similar to those of the Distance and Long Tonal calls: a first high formant at 

1.2 kHz and a second high formant at 3.7 kHz (see Table 2 and Figure 5A). Thus, although 

Song syllables were varied and appeared to overlap with other vocalization types, they 
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remained highly discriminable from calls in part because all notes shared the 3.7 kHz 

formant found in Distance calls but were otherwise shorter in duration and more modulated 

in time.

Sex acoustic signature—Across all vocalization types there were few but significant 

gender differences in acoustical parameters (Figure 8B). Post-hoc tests, taking a single 

vocalization type at a time, showed that sexual dimorphism was only significant for the Tet 
and Distance calls (see Figures 7 and Supplementary Figure 6). The greatest sexual 

dimorphism was observed for the Distance call (Vicario et al., 2001): female Distance calls 

were longer (Female Std T = 53.9 ms, Male Std T = 44.2 ms, P=0.03; Figures 7E and 

Supplementary figure 6B), had lower pitch (Mean F0: Female = 595 Hz, Male = 727 Hz, P < 

10−4; Figure 7A) and were composed of a single harmonic stack with a steadier and more 

salient pitch (CV F0: Female = 0.08, Male = 0.16, P=0.0012; mean Sal Female = 0.83, Male 

= 0.74, P=0.0065; Figure 7B). Male Distance calls were often composed of two parts: a 

short sharp harmonic stack with a very high pitch followed by a more noisy frequency 

down-sweep (see Figure 3). Zann and others have referred to that structure as TN for Tonal 

followed by Noise (Zann, 1996). The noisy down-sweep decreased the average pitch 

saliency of the male call. It was also during this down-sweep that instances of second voices 

were found. Comparatively, the sex differences for Tet calls were subtler: female Tet calls 

were slightly longer (Std T Female = 25.5 ms and Std T Male = 22.2 ms, P=0.001; Figures 

7E and Supplementary Figure 6B) and had spectral envelopes that were slightly shifted 

towards higher frequencies (Mean S Female = 2400Hz, Male = 2150Hz, P = 0.012; Figures 

7C and Supplementary Figure 6A). To further test that Tet calls were sexually dimorphic, we 

also performed the unsupervised clustering algorithm to all Tet calls in our data set. As 

shown on Supplementary Figure 4A, the PAF distribution for Tet calls was well described by 

two well-separated Gaussians with approximately equal weight; one group containing a 

majority of female calls and the second group containing a majority of male calls.

Summary—In summary, the zebra finch has a complex vocal repertoire of call types and 

song elements that are used in very specific behavioral contexts. On the one hand, all the 

vocalizations were broadband and showed a relatively restricted range of fundamental 

frequencies (at least relative to the human pitch scale) and, because of this, exhibited a 

characteristic zebra finch sound quality. On the other hand, the vocalization types were 

clearly distinct from each other both to trained ears and in our quantitative analyses. What 

are the acoustical parameters that are the most pertinent for the discrimination of 

vocalization types? We will revisit this question in a more systematic fashion below when 

we compare the discrimination performance using different feature spaces, but the PAF 

analysis was very revealing. As seen in Figure 8, parameters describing the spectral envelope 

(spectral mean, Mean S; and quartiles, Q1, Q2, Q3) varied the most across vocalization 

types. As described above, these differences were best understood in terms of distinctive 

formants (see also Figures 4,5 and Table 2). The second type of acoustical parameters that 

was the most distinctive across vocalization types was the set of parameters describing the 

pitch such as the pitch saliency (Sal) and pitch modulation (CV F0). Indeed, as shown on Fig 

7A, the zebra finch repertoire is composed of vocalization types with high pitch saliency on 

one extreme (Tet and Distance calls) and very noisy calls on the other extreme (Wsst and 
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Distress calls). Two other PAFs were also vocalization type dependent, but to a much lesser 

extent than the spectral envelope and the pitch saliency: duration (Std T) and the 

fundamental (F0). Whereas parameters that were the most distinctive of vocalization types 

were mostly related to the spectral shape, parameters that were most distinctive between 

male and female calls were the actual fundamental frequency (Mean F0), its maximum value 

(Max F0), the frequency of the second voice (Pk2), and, to a lesser extent, the pitch saliency 

(Sal). This sex difference could be seen for the most tonal calls of the repertoire: the contact 

calls (Long Tonal, Tet and Distance calls). Male contact calls had slightly higher 

fundamental frequencies than female contact calls, although in post-hoc tests this distinction 

was only significant for the Distance call.

Although all vocalization types can be discriminated from each other as we quantify below, 

we also observed a few organizing principles that grouped multiple vocalization types into 

larger classes. This grouping effect was particularly evident for the pitch saliency and the 

spectral mean (Figures 7B and 7C). The three contact calls in the repertoire (Long Tonal, 
Distance, Tet calls) had very high and similar pitch saliency whereas the calls produced in 

high stress contexts (Wsst, Distress, Begging calls) had the lowest saliency. The spectral 

mean divided vocalization types into 4 natural groups: the Begging calls with very high 

frequencies were their own class; Song and the two distance contact calls (Long Tonal and 

Distance calls) constituted the second class; all the non-affiliative calls had intermediate 

values of spectral mean and formed the third class; finally all affiliative calls used in close 

distance communication groups together as the class of vocalization with the lowest spectral 

mean. This grouping by spectral means could also be seen in terms of formant frequencies 

as shown on Table 2 and Figure 5.

Quantifying the Classification of Vocalization Types based on Acoustical Features

Above, we described some PAFs that are distinctive of all vocalization types: we showed 

that these carry information about vocalization types since high fractions of the variability 

found in some of these measures can be accounted for by the category (Figure 8). Next, we 

examined and quantified how well these acoustical features can be used to discriminate each 

vocalization type: we identified the best combination of parameters to perform such 

discriminations and we investigated to what extent categories were equally well 

discriminated. Moreover, although envelope and fundamental parameters are easily 

interpretable, they remain an ad hoc choice of acoustical features: since they are not 

invertible representations of the sound, they could miss acoustical information present for 

example in time varying spectro-temporal patterns such as frequency sweeps. We therefore 

also investigated more complete acoustical feature spaces: a complete and invertible 

spectrogram, the time-varying Mel frequency Cepstral Coefficients and the Modulation 

Power Spectrum (see Methods and Figures 2, Supplementary Figures 1 and 2). Finally, we 

used two classification algorithms: a regularized Fisher Linear Discriminant Analysis 

(RFLDA) and the Random Forest (RF) (see methods).

Performances of classifiers and feature spaces—On Figure 10, we show the 

confusion matrices obtained for the four feature spaces and two classifiers. For all four 

feature spaces, the performances of the RF and the RFLDA were very similar (Figure 11A), 

Elie and Theunissen Page 23

Anim Cogn. Author manuscript; available in PMC 2018 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



supporting the idea that vocalization types can be separated using linear combinations of 

these acoustical features. In terms of overall discrimination performance, the PAF space and 

the spectrogram feature space yielded similar levels of discrimination at around 60% of 

correct classification. As shown on Figure 11B, many vocalization types were classified well 

above this level. The notable exceptions were the Tuck call, which was confused with the 

other alarm call, the Thuk call, and the Distress call that was miss-classified as the 

aggressive Wsst call. As described above, given both the shared behavioral context during 

which these calls are emitted and the shared acoustical features, these confusions were not 

surprising. If Thuk and Tuck calls on the one hand, and Distress and Wsst calls on the other 

hand are combined to form 2 categories in lieu of 4, then the average PCC (for the RF 

classifier on PAFs) increases from 64 % to 76 %.

MPS and MFCC feature spaces could also be used to discriminate among call categories but 

not as efficiently. On the one hand, both the MPS and the MFCC captured some of the 

information present in the spectral envelope such as the formants, thus their good 

performance was not surprising. On the other hand, some acoustical properties were absent 

from these feature spaces. For example, the MFCC representation would not capture the 

pitch saliency and the MPS would not represent particular temporal sequences (for example, 

it cannot distinguish an upsweep followed by a downsweep from an downsweep followed by 

an upsweep). These two feature spaces were useful to compare our results to those obtained 

in previous research as well as to identify how one might design an optimal feature space. 

Note that the MFCC could be better exploited for the extraction of birds’ formants if the 

coefficients were optimized for the bird’s vocal tract instead of using parameters optimized 

for human voice. Since both the spectrogram feature space and the PAF space yielded the 

highest performance and provided discriminant functions that were easily interpretable, we 

will limit below the description of those discriminant functions to those two feature spaces.

Distinctive acoustical features given by multi-dimensional classifiers—Which 

acoustical features were revealed as relevant for this classification task, and how did the 

different vocalization types occupy that acoustical space? The top row of Figure 12 shows 

the first five discriminant functions (DF) obtained from the RFLDA performed on the 

spectrograms. The bottom two rows of Figure 12 depict how vocalization types were 

segregated in this discriminant space. The DF1 for the spectrogram did three things: it de-

emphasized the very high formants (F3 above 4 kHz and F4 above 6.5 kHz) present in the 

Begging call, it emphasized the high frequency formant (F2 between 3.2 and 3.8 kHz) 

present in the Distance call, Long Tonal call and Song syllables and it emphasized calls with 

high pitch saliency by picking out the fundamental and second harmonic of a stereotypical 

adult vocalization. The DF2 stressed the lower frequency formants (below 3kHz) present in 

non-contact calls (Wsst, Distress, Nest, Whine, Thuk and Tuck calls) and in the Tet, and 

deemphasized the high frequency band between 3 and 5 kHz, which corresponds to the tail 

of the second formants (F2) found in the Long Tonal call and in the Distance call in 

particular (Figure 4). DF3 deemphasized the very lower tail of the lower formants, and by 

doing so, separated the Wsst, Whine and Distress from other non-contact calls. DF4 and 

DF5 performed further analyses of the shapes of the spectral and temporal envelopes, 

extracting, for instance, measures of the duration of the vocalizations by differential 
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weighting of temporal slices that were alternatively emphasized and de-emphasized. In 

summary, these DF operated principally on the coarse spectral shape but also detected pitch 

saliency and temporal structures such as duration.

Table 3 shows the coefficients of the eight most important variables used for the first four 

DF in the RFLDA applied to the PAF space. As one might expect from the results of the 

models involving individual acoustical features (see above and Figure 8) and from the 

RFLDA applied to the spectrogram feature space, spectral envelope attributes dominated the 

first two DF and were present in all four: particular combinations of spectral means (Mean 
S), spectral skew (Skew S) and quartiles (Q) were used to distinguish the characteristic 

spectral envelope of each call. The amplitude of the call (as Max A or RMS) also played a 

role in all functions. The pitch saliency (Sal) in the first two DF and the fundamental (Mean 
F0) in combination with its CV (CV F0) in the third and fourth DF played a more minor 

role. The third DF also extracted temporal envelope parameters by emphasizing sounds with 

higher temporal modulations.

By comparing the scatterplots of the centroids in Figure 12(B and C) between the 

spectrogram feature space and the PAF space, one can see that the DFs 1 and 2 for both 

feature spaces performed a similar parsing of vocalization types (with an inverted sign in 

DF1). This congruence of the DF supports the conclusion that the information present in the 

coarse spectral envelope is highly robust to distinguish vocalization categories. Moreover, 

DF3, which was obtained from the PAF space and analyzed temporal modulations, 

performed a similar segregation as DF5 of the spectrogram feature space. Thus, both 

discriminant analyses uncovered similar discriminative structures in vocalization types.

Distinctive spectrographic features given by the Logistic Regression—Finally, 

we examined the single spectrographic dimension that would best distinguish one 

vocalization type from all the others. For this purpose, we performed a logistic regression in 

the subspace spanned by the 9 DFs (all significant with P< 0.001) obtained in the RFLDA of 

the spectrographic space (see methods). These logistic weights are shown as spectrograms 

on Figure 5B. Again, one can see that these functions were mostly different from each other 

by emphasizing different coarse regions of frequency space. Using black lines, we marked 

for each vocalization type the formants that were extracted from the average spectral 

envelope as shown on Figure 5A. One can see that these logistic functions emphasized 

frequencies that included the formants of the vocalization type while de-emphasizing 

frequencies of formants in other vocalization types often resulting in “edges” at formant 

frequencies: a red or positive weight at the formant next to a blue or negative weight just off 

the formant frequency. This organization is clearly visible for the Whine, Nest, Tet and 

Distance calls where the first two formants F1 and F2 are progressively higher and more 

separated. These logistic weights also extracted informative temporal structure and duration. 

In particular, all the weights for the shorter vocalization types (Tuck, Thuk and Tet calls) 

were shorter in duration and flanked by inhibitory side bands.

In summary, we provided multiple lines of evidence that show that behaviorally classified 

vocalization types can be discriminated from their acoustical properties and that spectral 

envelope features play a central role in this distinction. These spectral envelope features can 
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also be described in terms of characteristic formant frequencies. Vocalization intensity, pitch 

saliency and duration provide further distinguishing features.

Discussion

Domesticated zebra finches, which we raised socially and housed in enriched environments, 

as recommended by (McCowan et al., 2015; Olson et al., 2014), produced a range of 

vocalizations that could be classified based on their use in distinct behavioral contexts. 

These vocalizations were very similar to the ones that have been observed in wild zebra 

finches. By obtaining a very large database of high quality audio recordings of this complete 

vocal repertoire, we were able to determine the principal acoustical features that can be used 

to classify these vocalization types. For this purpose, we used both classical descriptions of 

sounds (the Predefined Acoustical Features, PAFs) and data driven approaches in 

combination with more modern statistical methods to extract the relevant acoustical features 

that could be used for this classification task. We found that zebra finch vocalizations used in 

different behavioral contexts are distinguishable primarily based on their spectral shape and 

secondarily based on their pitch saliency, which distinguishes noisy calls at one end from 

tonal or harmonic sounds at the other end. As we will discuss below, these results have 

implications for understanding the evolution of complex vocal communication signals 

(Fitch, 2000) and for investigating physiological and neural mechanisms involved in their 

perception (Elie and Theunissen, 2015; Fitch and Kelley, 2000; Woolley et al., 2009) and 

production (Ohms et al., 2010; Riede et al., 2006; Riede et al., 2013; Wild and Kruetzfeldt, 

2012). We will first summarize and discuss the results that relate to our immediate goals of 

describing the zebra finch vocal repertoire before discussing in more depth the implications 

of our results for more general theories in animal communication.

Comparison between the vocal repertoire of domesticated and wild zebra finches

Besides the song, domesticated zebra finches have a rich vocal repertoire of communication 

calls that include aggressive calls, alarm calls, distress calls, contact calls, nest calls and 

begging calls. The repertoire of our domesticated zebra finches is similar to that of wild 

zebra finches as described by Zann (1996) with however 4 discrepancies: the absence of the 

Stack call, the heterogeneity (or duality) of Tet calls, the grouping of Ark and Kackle calls 

into a single Nest call category and the description of a new alarm call, the Tuck call. Zann 

describes the Stack call as “Louder, longer and higher pitched than Tets, but softer, shorter 

and lower pitched than Distance calls, Stacks are emitted at the moment of take-off.” The 

unsupervised clustering analysis we conducted on Tet and Distance calls categorized those 

calls into two and not three groups, excluding the possibility of a “missed” category between 

Tet and Distance calls. Thus, our dataset does not appear to contain the Stacks as described 

by Zann. Domesticated zebra finches might produce few of these Stack calls because a 

synchronized take-off is not part of their repertoire when housed in cages. More recently, Ter 

Maat et al. (2014) also designated some soft contact calls exchanged between domesticated 

zebra finches as Stack calls because they could be described as constant harmonic stacks in 

the spectrogram space (see also Gill et al., 2015). These stack-looking calls could be 

distinguished from Tet calls by being slightly longer and less modulated in pitch. The results 

from our unsupervised clustering analyses do support the idea that, based on their acoustical 
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properties, soft contact calls, designated as Tet calls here, can be categorized into two call 

types: one with greater frequency modulation and one that can be described as a constant 

harmonic stack. This distinction was never described by Zann in wild zebra finches and 

could be a particularity of domesticated birds as it matches the observations of Ter Maat et 
al.. Because in our hands these two types of close distance contact calls were emitted in the 

same behavioral context, we decided to keep them in one group in our analysis (and labeled 

all of them as Tet calls). In the future, to avoid confusion with the take-off call described by 

Zann, we suggest dividing the soft contact calls into Tet-M and Tet-S for Tet-Modulated and 

Tet-Stacks.

Regarding the soft and short calls emitted by adults around nest activities, we did not 

distinguish Arks and Kackles. Here, the unsupervised clustering analysis supported a 

unimodal distribution of sounds, and given that the calls were produced in the same context, 

we could not justify additional groups and maintained a single category, the Nest calls. We 

note, however, that this category is relatively large and that calls could be classified along a 

continuum going from more tonal Ark calls to more noisy Kackle calls. Finally, we divided 

alarm calls into Thuk and Tuck calls, a distinction that had not been made until now; Thuk 
calls are alarm calls emitted by brooding parents and Tuck calls are alarm calls emitted by 

any adult (see results). The unsupervised clustering analysis supported this novel distinction. 

Ultimately, we described a complex vocal repertoire of 8 adult call types shared among the 

two sexes, 2 juvenile calls, and a song that is uniquely produced by males. In addition, the 

complete zebra finch vocal repertoire probably includes a Stack call emitted at take-off and 

an unmodulated Tet call, the Tet-S. Finally, Nest calls could be produced along a continuum 

of tonal to noisy sounds, which might also be produced in slightly different behavioral 

contexts.

Quantifying the discrimination

Our classification procedures allowed us to quantify the discrimination of vocalization types 

based on acoustical features of single calls and, by generating confusion matrices, to 

determine the potential nature of systematic errors in such classifications. The performance 

of the classifiers is relatively high, at approximately 60% across all categories and reaching 

levels above 80% in cross-validation data for Begging, Long Tonal and Wsst calls. The calls 

that are the most confused are: the Distress call, that is systematically confused with the 

Wsst call; the Tuck call, that is systematically confused with the Thuk call; and the song 

syllables. Results from our unsupervised clustering show that Distress and Wsst calls are 

mixed in acoustical space. This overlap might also make sense from a behavioral standpoint: 

Distress and Wsst calls are produced in the same context, during intraspecific conflicts 

where the aggressor and aggressed can change roles or express various levels of aggression 

and distress. If the acoustical changes are graded they might be poorly accounted by a 

categorization. Alternatively, Wsst and Distress calls might be acoustically distinguishable 

in the temporal sequence of syllables, which was not examined here. In our dataset, Distress 
calls were more often misclassified than Wsst calls; this asymmetry can be explained by the 

fact that our sample size for the Distress calls was much smaller than for the other call types. 

Given the design we chose for the cross-validation procedure of the classification algorithms 

(the validating dataset not only did not contain any of the sounds of the training set but also 
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did not contain any vocalizer that had been chosen for the training set), categories with 

smaller sample size were penalized. Thuk and Tuck calls are the two alarm calls that, given 

their observed effect on receivers, we believe are directed to juveniles and adults 

respectively. Our unsupervised clustering analysis shows that these two call types are indeed 

well separated acoustically (and are not part of a unimodal distribution that we divided in 

two) but with some overlap. Song syllables are also often misclassified but not 

systematically. Instead song syllables can be confused with many different call types, which 

is to be expected given the variability of song syllables (Williams, 2004). Note also that our 

classification procedure was based on isolated calls and song syllables. Other acoustical 

structure such as the temporal sequence of calls and song syllables would provide additional 

vocalization specific cues: Distance calls are often produced in pairs; Begging calls are 

produced in bursts; Tet calls are emitted in long intermittent streams; Whine, Tet and Nest 
calls are produced in synchronized duets between mates (Elie et al., 2010) and Song is 

characterized by a very stereotyped and fast temporal sequence of specific song syllables. 

Including such temporal sequence information in our classifiers would have certainly 

increased the discrimination performance. Finally, the performance of classification that we 

obtained should be compared with that of zebra finches. Indeed, behavioral testing of zebra 

finches using conditioning procedures will assess the actual behavioral discriminability of 

these vocalization categories based solely on acoustical cues and reveal how zebra finches 

hierarchically structure their own repertoire.

Acoustical features for vocalization type discrimination

Our extensive database of vocalization examples allowed us to use a data driven approach, in 

addition to a more classical bioacousticians’ approach (using the PAFs), to determine, 

without making any a priori assumptions on the nature of the relevant acoustical features, the 

acoustical parameters that vary across vocalization types and could therefore be used for 

vocalization type classification. For this purpose, we used an over-complete representation 

of the sounds, their spectrograms, and used data reduction techniques (PCA) combined with 

cross-validated classifiers to find the relevant acoustical features. Similar approaches that 

rely heavily on large data sets and machine learning techniques have been used recently to 

classify birds’ calls from different species (Stowell and Plumbley, 2014) and to cluster a 

primate species’ calls using unsupervised algorithms (Fuller, 2014). Such data driven 

approaches provide unique opportunities to examine the information-bearing features in 

communication sounds without making a priori assumptions on the nature of such features 

or on the number of categories. Besides, our approach using the full spectrogram can also be 

used with sounds degraded by other signals or propagation (Mouterde et al., 2014) as it will 

happen in normal communication events in wild species.

Formants produced by active vocal filtering—To validate our approach and to 

facilitate the interpretation of our results, we used 3 sound representations, besides the 

spectrogram: the MFCC and the MPS as well as predefined but more classical sound 

features extracted from the spectral and temporal envelopes and the time-varying 

fundamental (the PAFs). The results for all these analyses led to the same conclusion: zebra 

finch vocalization types are primarily distinguishable based on the coarse shape of their 

spectral envelope and secondarily based on the saliency of their periodicity structure or pitch 
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saliency. In contrast, the frequency of the fundamental (the pitch) varied very little across the 

entire repertoire (see results and Figures 7A and 8A). Moreover, examination of the average 

spectral shape of each vocalization type (Figure 5A) and of the spectro-temporal 

discriminant and logistic functions (Figures 12 & 5B), both point to characteristic spectral 

peaks for each vocalization type that can be used for the vocalization classification task. 

These formants can in part be attributed to resonances in the birds upper vocal tract: in a 

recent original study using X-ray cinematography, Riede et al. (Riede et al., 2013) show that 

singing and calling zebra finches vary their tracheal length, the size of their oropharyngeal–

esophageal cavity (OEC) as well as the gape of their beak (Goller et al., 2004) to modulate 

the resonant peaks of their vocal tract. The OEC resonance results in a formant peak 

between 2 and 5 kHz while the trachea and the beak can produce other formants in the same 

frequency range. Our data suggest that indeed zebra finch vocalizations vary in the number 

and the positions of these formants. We did not directly associate resonances of a particular 

anatomical structure of the vocal tract to the formants we measured but, given the results in 

(Riede et al., 2013) obtained for Tets and Distance calls, we suspect that the formant 

frequencies labeled F2 (and F3 for Distress and Begging calls) are produced by changes in 

the OEC. This hypothesis could be tested using the experimental techniques of (Riede et al., 

2013) while birds produce all the vocalizations in their repertoire.

Thus, songbirds join other birds (Fitch and Kelley, 2000), some mammals (Fitch, 1997; 

Reby et al., 2005; Riede and Zuberbuhler, 2003) and humans (Lieberma. Ph et al., 1969) in 

the use of varying spectral resonant peaks in their vocal tract to generate communication 

calls with distinct information. Moreover, although in most animals, the vocal tract filtering 

appears to be principally used in a static way (Fitch, 1994; Fitch, 2000; Fitch, 2000; Fitch, 

2002; with notable exceptions such as the larynx descent in the red deer that is used for 

acoustic size exaggeration, Fitch and Reby, 2001) and is useful for identifying the caller and 

some of his anatomical or physiological attributes (Fitch, 1997; Taylor and Reby, 2010), 

birds and primates (Riede and Zuberbuhler, 2003) are also able to use active vocal filtering 

for generating vocalization types with different meanings. Active vocal filtering might 

therefore be a more ubiquitous feature in animal vocal communication than previously 

thought and differences in complexity between the human control of formants and those of 

birds might also not be so disparate.

The role of the syrinx and respiratory system—Zebra finches’ vocalization types are 

not only characterized by their spectral shape but also by their pitch saliency, duration and 

intensity. Vocalization types vary in their pitch saliency from the very noisy aggressive 

(Wsst call) and Distress calls to the very tonal contact calls (Distance calls, Tet calls and 

Long Tonal calls). The pitch is produced by the birds’ vocal organ, the syrinx (Fee, 2002; 

Goller and Larsen, 1997), and models suggest that noisy sounds could also be generated at 

the syrinx when high air-sac pressure drives the system into chaotic regimes (Elemans et al., 

2009; Fee et al., 1998). Thus, control of the syrinx in conjunction with the respiratory 

system will be key for controlling the pitch (the fundamental), the pitch saliency, the 

duration and the amplitude of the sounds. Moreover, it is also known that the non-linear 

dynamics of the syrinx produce spectrally rich tonal sounds: the syrinx in isolation already 

generates harmonic sounds with particular spectral envelopes that are correlated with the 
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fundamental frequency (Fee et al., 1998; Sitt et al., 2008; Williams et al., 1989). The 

acoustic formants we measured might therefore depend both on the mechanical properties of 

the syrinx and of the upper vocal tract. Thus, the generation of a variety of vocalizations in 

the zebra finch repertoire requires the coordinated control of the respiratory organs, the 

syrinx and the upper vocal tract, just as in human speech (Riede and Goller, 2010).

The neural control of the syrinx in songbirds is relatively well explored in the context of 

song production in male birds (e.g. Amador et al., 2013; Hahnloser et al., 2002) but the 

neural control of the syrinx for other vocalization types is just beginning to be examined (Ter 

Maat et al., 2014) and the coordination of the respiratory system, the syrinx and the upper 

vocal tract to produce the sounds in the entire repertoire has not been studied. Given the 

wealth of research on the syrinx and its neural control and now our quantified description of 

the complete vocal repertoire of the zebra finch, we believe that the Zebra finch model is 

particularly appropriate for investigating the neural and motor control for the production of a 

complete and complex vocal repertoire. Such studies would not only provide insights on 

neural control of vocal gestures but also on the evolution of brains and vocal organs for the 

production of a complex vocal signaling system.

Expected consequences for the behavioral and neural discrimination of 
vocalization types—Our analysis opens the doors for behavioral and neurophysiological 

experiments on the perceptual side. The behavioral perception of sounds in zebra finches has 

been well studied but principally as it applies to song perception (e.g. Clayton, 1987; 

Clayton and Prove, 1989; Scharff et al., 1998; Sturdy et al., 1999) and the question of 

individual recognition (e.g. Mouterde et al., 2014; Vignal et al., 2008). Zebra finches are also 

known to be exquisitely sensitive to the spectral structure of harmonic sounds (Lohr and 

Dooling, 1998). It has also already been demonstrated that zebra finches can learn to classify 

their song syllables and human speech vowels as open-ended acoustic categories 

(Kriengwatana et al., 2015; Sturdy et al., 1999). However, it remains to be seen whether 

zebra finches are able to perform categorical perceptions in conditioning experiments along 

the lines of the vocalization categories described here. Similarly conditioning experiments, 

where the specific cues that we have identified here as being important for vocalization 

categorization are systematically manipulated, need to be performed to directly assess their 

actual importance from the receivers’ perspective. The representation of natural sounds in 

the avian auditory forebrain has also been well studied. We and others have shown that the 

avian auditory cortex is particularly responsive to spectro-temporal structure found in natural 

sounds (Hsu et al., 2004; Woolley et al., 2005). Moreover, spectro-temporal receptive fields 

(STRFs) estimated for auditory neurons in the avian auditory cortex exhibit a range of 

tuning that includes neurons with coarse spectral tuning that would be useful to extract 

formants (and timbre) and narrow spectral tuning with long integration times that are 

efficient at detecting pitch saliency (Kim and Doupe, 2011; Nagel and Doupe, 2008; 

Woolley et al., 2009). In a recent study, we have directly measured neural responses to the 

entire vocal repertoire and found that approximately 50% of auditory neurons have 

responses that carry information about vocalization type category and a fraction of these 

“semantic” neurons also showed selective and invariant response properties for vocalization 

categories (Elie and Theunissen, 2015). We are currently investigating the nature of the non-
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linear transformations between sound and neural responses that could explain these 

“categorical” neural responses. Given the results presented in this paper, we hypothesized 

that we will find neuron responses that extract formant information along the characteristic 

axis of specific vocalization types (e.g. in STRFs that resemble the logistic weights of Figure 

5B) or that are sensitive to pitch saliency. Step-like response functions along such acoustical 

dimensions could then be used to categorize sounds into specific vocalization types.

Evidence for Referential coding in Zebra Finches?

Multiple species of birds (Evans et al., 1993) and mammals (Seyfarth et al., 1980) have 

shown to produce different alarm calls depending on the type of predator. In addition, in 

birds, these alarm calls elicit different behaviors in chicks and adults (reviewed in Gill et al., 

2013). For example, the white-crowned scrub-wren produces a buzz in response to ground 

predators and a trill in response to aerial predators. In response to the trill, nestlings will stop 

producing begging calls while adults will scan the environment and fly to cover. Here we 

have found that zebra finches produce two types of alarm calls that are distinguishable based 

both on their behavioral context and on their acoustical structure: the Thuk call and the Tuck 
call. Moreover, in captivity, the Thuk was observed to be directed at chicks that immediately 

stopped begging in response, while the Tuck was directed at the entire group and elicited 

adults to stay quiet and motionless and to scan the environment. As discussed in Gill et al. 
(2013), the study of alarm calls in birds could provide further insights on the degree to 

which animal produce communication calls that have a functional reference and thus that are 

not simply the result of an internal state. Here, zebra finches appear to change their alarm 

call depending on whether or not danger appear in co-occurrence with their chicks emitting 

begging calls. Further behavioral studies identifying all the exact contexts that can 

systematically elicit each type of alarm call and investigating whether playback yields 

differential responses in adult and chicks are needed to determine whether zebra finches also 

produce calls with functional references.

A universal size for the core elements constituting a vocal repertoire?

The size of the repertoire of the zebra finch is of similar order of magnitude to the sizes of 

the repertoires that have been described principally based on spectrographic examination in 

other species of birds; for example, adult black-capped chickadees produce 11 calls plus two 

in chicks (Ficken et al., 1978), 24 call types have been described in the red jungle fowl 

(Collias, 1987), 11 call types in the Eurasian stone-curlew (Dragonetti et al., 2013). 

Interestingly, similar repertoire sizes are also described in mammals: for example, spotted 

hyenas have a repertoire of approximately 10 calls (Kruuk, 1972), dingos produce 9 

vocalizations in classes that are similar to other canids (Deaux and Clarke, 2013), 

chipmunks produce 13 distinct calls including 4 types of alarm calls (Brand, 1976) and 17 

call types are found in Western and Mountain Gorillas (Salmi et al., 2013). Although these 

numbers are similar, it is clear that differences in morphology of the vocal and perceptual 

systems, as well as differences in social and ecological conditions across species, even 

closely related ones (Salmi et al., 2013), will result in distinct repertoires or distinct uses and 

functions of acoustically similar communication calls. Besides, this apparent lack of a 

universal code for communication in the animal kingdom has even been contrasted to our 

shared genetic code (Hauser et al., 2002). However, this idea of a lack of a universal code 
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can be partially refuted and our results provide additional evidence for common principles. 

In terms of the similarity in the numbers of communication calls produced by social birds 

and mammals, it might be interesting to speculate on the presumably innate capacities to 

produce a repertoire limited to approximately 10 call types. It is certainly possible that the 

number of call types has evolved separately in each species to match approximately 10 

prototypical behaviors found in all social animals centered around danger (alarm calls), 

fighting (distress and aggressive calls), group cohesion (contact calls) and mating (nest and 

contact calls and song), with varying numbers in each of these categories (e.g. number of 

alarm calls) depending on the species dependent ecology and behavior (Wilson, 2000). Or 

perhaps this approximately similar limit across species in the vocal repertoire is driven by 

common mechanisms of production or perception. For example, it is interesting to note that 

human languages use between 3 and 20 (and mostly below 10) vowel sounds that are 

distinguishable based on their formants and spectral shape (Ladefoged, 2012). This number 

is within the range of the 10 to 20 vocalization categories that are found in avian repertoires 

and that, at least in zebra finches, differ mainly based on their spectral shape. If the use of 

formants to distinguish vocalization types tends to be a rule in animal communication 

system, then the size of the core elements constituting the repertoire could be constrained by 

common mechanisms of production or perception of different spectral shapes.

A Universal code for animal communication? Ecological and Motivational explanations for 
the structure-function of communication calls

Are there any common principles shared across species that correlate specific acoustical 

traits to the meaning of the sound? At a coarse level the answer to this question is yes, and 

the link between sound and meaning can be understood for ecological reasons, such as 

efficient transmission or on the contrary the need to be inconspicuous to avoid predation 

(Morton, 1975), or as “rules” relating motivational states to sound structure (Morton, 1977; 

Owren and Rendall, 2001). As summarized by Collias (1987, p.510) when describing the 

vocal repertoire of the red jungle fowl: “Brief, soft repetitive notes of low frequency are 

attraction calls. Loud harsh sounds with high-frequencies are alarm cries. Harsh sounds 

emphasizing low frequencies are threat sounds. These rules hold for many other birds”. 

These rules work because these physical properties of sounds elicit approaching or avoiding 

behaviors respectively from the receiver of any species. However, as very well explained by 

Seyfarth et al. (2010), a strict manipulative view of communication calls from the 

perspective of the receiver is certainly over simplistic since receivers can choose to respond 

differently to calls with similar acoustical features or to identical calls in different contexts 

and to respond similarly to calls with different features. For these reasons, Seyfarth et al. 

argue that animal communication is better analyzed with an information perspective and we 

fully agree with their point of view. However, we also found some evidence for general 

principles that can explain some of the physical characteristics of communication calls in 

terms of ecological constraints and the motivational perspective. In terms of ecological 

constraints, we noted that the Distance call of the zebra finch is the loudest allowing for long 

range propagation and in previous work we have also shown that its harmonic structure 

(high pitch saliency) as well as the modulation of the fundamental are important for 

transmitting the individual signature over long distances (Mouterde et al., 2014). The alarm 

calls are also relatively loud but very short, making them harder to localize, which is critical 
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in the presence of potential predators. In terms of the motivational approach, we also find 

support for the rules spelled out by Collias (1987): the most affiliative calls (Nest and 

Whine) are the softest in the repertoire and with the lowest spectral mean while the 

aggressive (Wsst call) and distress calls are the noisiest (low pitch saliency) and with the 

largest spectral bandwidth. It is however interesting to note that zebra finch Begging calls 

also share these physical attributes (and also have the highest spectral means), suggesting 

that they should be highly aversive while they clearly elicit approaching behaviors, at least in 

parents. These examples and apparent counter-example (the parents might also be motivated 

to stop the begging calls; e.g. Rendall et al., 2009) support the rules of the motivational 

theory but also illustrate that a strict manipulative view of the receivers response without 

taking into account the informative features in the communication will fail to explain the 

range of complex behaviors elicited by communication calls (“I hear begging calls: Are 

those the begging calls of my chicks? Have they already been fed? Are they ready to be 

weaned?”).

Conclusions

As stressed by Marler (2004), the study of birdcalls and bird communication offers unique 

opportunities for behavioral neurobiology. Our quantitative analyses of the complete vocal 

repertoire of the zebra finch allowed us to make significant findings on the information-

bearing features for vocalization type discrimination: vocalizations are mostly categorized 

by the shape of the spectral envelope that can be explained in terms of formants produced 

both by the syrinx and the vocal tract of the bird. The dynamic vocal tract shaping is 

therefore not unique to humans or a few mammals. In addition, we have shown how our data 

provides support for general principles of animal communication including, on one hand, the 

ecological and motivational links between physical structure and meaning and, on the other 

hand, the importance of an “information” approach where behavioral response to specific 

calls are interpreted in terms of the new specific information they provide for the receiver 

(e.g. the behavioral response of noisy begging calls by parents and non-parents) (Seyfarth et 

al., 2010). Finally, our quantitative description of complete vocal repertoire of the zebra 

finch will facilitate neuro-ethological research for understanding the neural basis of 

perception and production of communication calls.
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Figure 1. Extraction of the Predefined Acoustical Features (PAFs) and flow-chart showing the 
classification procedure using these parameters
Five acoustical parameters were obtained from the temporal amplitude envelope of the 

sound (middle top, in blue), two parameters characterized the amplitude of the signal 

(middle top, in black), eight acoustical parameters were derived from the spectral amplitude 

envelope (middle center, in red) and seven acoustical parameters described the time varying 

fundamental (bottom center, in green). The fundamental is shown as a black line on the 

spectrogram. The fundamental is only extracted when the pitch saliency is greater than 0.5. 

These 22 acoustical parameters were then used to train two classifiers in vocalization 

category discrimination: a Random Forest and a Fisher Linear Discriminant Analysis. 

Performance was assessed by cross-validation. See Methods for more details on the 

calculation of the parameters and on the classification procedure.

Elie and Theunissen Page 39

Anim Cogn. Author manuscript; available in PMC 2018 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Flow-chart showing the regularized classification procedure using a complete and 
invertible spectrogram to represent the vocalizations
Here we performed a classification of vocalization category using an over-complete feature 

space representation of the sounds: an invertible spectrogram (top panel, Feature Space 

column). The invertible spectrogram had 231 frequency bands between 0 and 12 kHz (~52 

Hz bandwidth) and a sampling rate of 1017 Hz yielding 357 points in time for the 350 ms 

window used to frame each vocalization. The total number of parameters describing the 

sounds in this spectrographic representation was 82,467. To prevent overfitting, we reduced 

the number of parameters using a principal component analysis (PCA). The first 20 PCs are 

shown as little spectrograms in the bottom row of the Feature Space column. The optimal 

number of PC coefficients was found by training the two classifiers with a varying number 

of PC coefficients and estimating the performance of the classifier using a cross-validation 

data set. The performance of the classifiers as a function of parameters is shown on the line 

plot in the Regularization column. RF = Random Forest, RFLDA = Regularized Fisher 

Linear Discriminant Analysis, PCC = Probability of Correct Classification. The solid lines 

correspond to the performance averaged first for each vocalization type and then average 

across all types. The dashed lines correspond to the average overall performance (the 

average across types weighted by the number of vocalizations in each category). 

Performance for all these measures plateaued or decreased at approximately 40 PCs. 40 PCs 

explained 87% of the overall variance in the spectrograms of all vocalizations. The 

classification results presented in detail in this paper were thus obtained by describing each 

sound with the coefficients of 40 PCs. See the Methods for more details on the 

spectrographic representation and on this regularized classification procedure.
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Figure 3. The zebra finch vocal repertoire
Spectrograms of examples of each vocalization type found in domesticated zebra finches. 

The top row shows the two types of calls produced solely by chicks: a Begging call bout and 

a Long Tonal call. The Long Tonal call is the precursor of the adult Distance call and 

functions as a contact call. The second row shows the calls produced by adults during 

affiliative or neutral behaviors. The Whine and the Nest calls are not only produced during 

early phases of pair bonding and nest building but also any time mates are relaying each 

other at the nest. The Tet call is a contact call produced for short-range communication while 

the Distance call is a contact call produced for long-range communication. Both are sexually 

dimorphic. The third row shows the calls produced during agonistic interactions or 

threatening situations by adults. The aggressive call, called the Wsst call, is made here of 

two syllables and is produced shortly before aggression of a conspecific. The Distress call 

made here of three syllables is produced by the victim during or just after the aggression. 

There are two alarm calls called the Thuk call, produced by parents and directed at chicks 

and mate, and the Tuck call, a more generic alarm call. Finally, an example of a Song, the 

more complex signal used by males in courtship, pair bonding and mating behavior is shown 

on the last row. The color code used in this figure categorizes the vocalization types into 

hyper classes: blue hues for chick calls, pink to deep purple hues for affiliative calls, red/
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orange hues for non-affiliative calls and grey/black for song. The same color code is used in 

all the figures. For the spectrogram colors, vocalizations in each group (rows) where 

normalized to peak amplitude and a 40dB color scale was used. The sounds corresponding 

to these vocalizations can be found online as supplemental material (chick calls, 

Supplementary Sound File 1; affiliative calls, Supplementary Sound File 2; nonaffiliative 

calls, Supplementary Sound File 3; and song, Supplementary Sound File 4). The 

abbreviations used for each category in other figures are given in parenthesis.
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Figure 4. Average frequency power spectra
The average frequency power spectra for each vocalization type were obtained by first 

averaging the spectra of all vocalizations for each bird and each vocalization type, and then 

averaging across birds for each vocalization type. 100 dB corresponds to the peak amplitude 

recorded (found for Distance calls ~ 80 dB SPL at 20 cm). Abbreviations are defined in 

Figure 3.
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Figure 5. Formant peaks revealed by average frequency power spectra and Logistic Regression 
Functions (weights) for each vocalization type
The upper panel (A) shows the average power spectrum for each vocalization type in log 

frequency – dB scale. Compare to Figure 4, the average power spectra were calculated on 

normalized spectra (peak = 100 dB), by first averaging the normalized spectra of all 

vocalizations within the same category for each bird and then average over birds for each 

vocalization type. These power spectra show two and sometimes three peaks at reliable 

frequencies that we call formants, using its acoustical definition. The vertical dotted lines 

show the location of these spectral envelope peaks. (B) For each vocalization type, we 

performed a separate logistic regression to assess how well a particular category could be 

distinguished from all the others and to determine the spectro-temporal features that could 

best select one vocalization type over the others. The logistic regression was applied to the 

vocalizations in the spectrogram feature space and the weights of the regression are shown 

as spectrograms. On the right side of the spectrogram, short black lines indicate the formants 

found in the average power spectrum of each vocalization category as shown on A. 

Abbreviations are defined in Figure 3.
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Figure 6. Temporal Amplitude Envelopes
The average temporal amplitude envelope for each vocalization type is shown raw on the left 

panel (A) and normalized by peak amplitude on the right (B). Note that the y-scale is linear 

and not logarithmic as in the frequency power spectra of Figure 4. These average envelopes 

were obtained by first averaging for each bird and vocalization type, and then across birds. 

Abbreviations are defined in Figure 3.
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Figure 7. Box and whisker plots for 6 out of the 22 PAFs vs vocalization type
These parameters were chosen to illustrate the distinctive acoustical properties of 

vocalization categories. The bottom and the top of the solid rectangles correspond to the 

beginning and end of the 2nd and 3rd quartile and the whiskers show the entire range of 

values found in our data set. In all plots the vocalization types (shown in the x-axis) are 

ordered in increasing value of the corresponding acoustical feature to facilitate the 

interpretation of the results. Two acoustical properties related to the fundamental frequency 

are shown on the first row: the fundamental frequency F0 (A) and the saliency (B) defined as 

the proportion of sections of the vocalization with an auto-correlation peak amplitude at the 

periodicity period greater than 50% of the peak amplitude at zero. Two acoustical properties 

related to the spectral envelope are shown in the middle row: the spectral mean (C) and the 

spectral bandwidth (D). Finally, two additional properties, the duration (E) and the sound 

intensity (F) are shown in the third row. The *, **, *** indicate significant differences 

between male and female vocalizations for specific types in post-hoc tests with p < 0.05, 

<0.01 and < 0.001 correspondingly. Vocalization abbreviations are defined in Figure 3.
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Figure 8. Variance explained by the Vocalization Type and additionally by Sex for each of the 22 
PAFs
(A) The adjusted R2 is the fraction of the variance explained in a linear mixed-effects model 

with vocalization type as a predictor and bird identity as a random factor. (B) The difference 

in adjusted R2 is the difference in adjusted R2 obtained from the model that includes 

vocalization type and sex (including interactions) and the adjusted R2 obtained from the 

model that only includes vocalization type as a predictor. The color code is used to 

distinguish acoustical parameters that characterize the spectral envelope (red) from those 

that characterize the temporal envelope (blue), those that characterize the pitch of the sound 

(green) and those that characterize the intensity of the sound (black). The * indicate the 

values that were significantly different from zero with p<0.05. Note that a different y-scale is 

used in the two graphs.
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Figure 9. Unsupervised Clustering: Are Thuk acoustically distinct from Tuck calls, and Distress 
from Wsst calls?
A “mixture-of-Gaussians” model was fitted to the probability density distribution of the 10 

first principal component coefficients derived for the 22 PAFs as defined on Figure 1 (see 

Methods). Each point in the raster plots on the left and middle column correspond to one 

vocalization. The points are color-coded according to call type but the mixture-of-Gaussians 

algorithm is blind to this information. The ellipses and center black dot show the covariance 

(at one standard deviation) and mean of the fit obtained from a mixture of two Gaussians 

model. The size of the center dot is proportional to the weight of the Gaussian. A. Distress 

and Wsst calls. We analyzed the shape of the distribution of Wsst and Distress calls as one 

group. Two Gaussians with similar weights (w1=0.4603, w2 = 0.5397) provided a good 

description of the distribution but the two call types were equally assigned to each of these 

two groups (z=1.57, p=0.12) suggesting that, at the level of a single call syllable, Distress 

and Wsst are acoustically similar. B. The second row shows the results of the same analysis 

for Thuk and Tuck calls. Here also two Gaussians with similar weights (w1=0.4591, w2 = 

0.5409) fit the data well. The bar graph on the right panel shows the proportion (and raw 

number) of Thuk and Tuck that would be assigned to each of these two groups. The 

proportions are different in the two groups (z=9.92 p<10-4).
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Figure 10. Confusion Matrices
The figure shows all the confusion matrices obtained from the Random Forest (left column) 

and Regularized Fisher Linear Discriminant Analysis (right column) for the four feature 

spaces used here and described on Figures 1, 2, Supplementary Figures 1 and 2. In a 

confusion matrix each row shows how exemplars from a particular vocalization category 

were classified into the categories shown in the columns. The color code is used to show the 

probability of that classification: the conditional probability of classifying a vocalization as 

type x (column x) when it is actually type y (row y). The classification is performed on a 

cross-validation dataset as explained in the methods. The average percentage of correct 

classification, obtained by averaging the diagonal of each matrix, is shown on the top of 

each confusion matrix. These numbers are used in the plot of Figure 11A. Abbreviations are 

defined in Figure 3.

Elie and Theunissen Page 49

Anim Cogn. Author manuscript; available in PMC 2018 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11. Performance of the Random Forest (RF) and Regularized Fisher Linear Discriminant 
Analysis (RFLDA) for all vocalization types and for each feature space
A. Average performance of each classifier across all vocalization types. The error bars are 

confidence intervals obtained from a binomial fit of the classification performance on cross-

validated data. The dotted horizontal line is the chance level (1/11). B. Performance of the 

RFLDA for each vocalization type. A gradient of darkness (from light to dark) is used to 

represent the four feature spaces: Predefined Acoustical Features (PAFs), Spectrogram 

(Spect), Modulation Power Spectrum (MPS) and Mel Frequency Cepstral Coefficients 

(MFCC). The vocalization types on the x-axis are sorted in ascending order according to the 

percent of correct classification obtained with the Spectrogram feature space. Abbreviations 

are defined in Figure 3.
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Figure 12. Discriminant Functions (A) and positions of vocalization types in Discriminant 
coordinates (B and C)
A. The first 5 discriminant functions (DF) obtained in the RFLDA applied to the 

spectrogram feature space. These discriminant functions are displayed in a spectrographic 

representation. Each vocalization was then represented in RFLDA coordinates by projecting 

its spectrogram onto these Discriminant functions (using a vector dot product). B and C. The 

average position of each vocalization type (centroid) is shown as a colored rectangle in 

coordinate-pair scatter plots. The DF have been scaled so that the within vocalization type 

variance along each discriminant dimension is equal to 1. In B the positions of the centroids 

obtained from the RFLDA applied on the spectrogram feature space are shown. In C the 

positions of the centroids obtained from the RFLDA applied on the Predefined Acoustical 

Features are shown. Vocalization abbreviations are defined in Figure 3.
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Table 1

Vocalization names and number of calls or syllables and birds recorded in our zebra finch Vocalization 

Database

Vocalization Type Abbreviation # Sounds # Birds

Wsst Ws 235 23

Begging Be 1824 15

Distance DC 630 26

Distress Di 51 11

Long Tonal LT 217 13

Nest Ne 1063 23

Song So 2776 13

Tet Te 613 24

Thuk Th 290 13

Tuck Tu 240 13

Whine Wh 197 15
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Table 2
Frequency of spectral peaks (formants, in kHz) in the average spectral envelope of each 
vocalization type

The location of these peaks is shown as dotted lines on Figure 5a.

F1 F2 F3 F4

Begging 0.67 1.69 4.67 6.53

Long Tonal 1.67 3.86

Tuck 1.22 2.55

Thuk 1.36 2

Distress 0.67 1.38 2.69

Wsst 0.69 1.81

Whine 0.76 1.65

Nest 0.76 2.12

Tet 0.95 2.38

Distance 1.43 3.24

Song 1.19 3.72
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Table 3
Description of the first four discriminant functions (DF) obtained from RFLDA in the 
PAF space

Coeff: coefficients of the 8 most important acoustical factors for each discriminant function; CumVar: 

cumulative between group variance explained by the discriminant functions. Note that the colors of the 

variables reflect the classification between spectral (red), temporal (blue), pitch (green) and amplitude (black) 

parameters.

DF Cum Var Coeff

1 55.5

2 73.9

3 84.5

4 92.2
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